Homework on Sections 4 and 5

Due Monday, Sep 11

This homework must be done individually. Remember to follow Math department's guidelines for homework. Please write your solutions neatly. Typesetting in LaTeX is appreciated and encouraged.

1. Let $G=\mathbb{Q}[\sqrt{2}]:=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$
(a) Show that G is a group under usual addition of real numbers. Hence $\langle G,+\rangle \leq\langle\mathbb{R},+\rangle$
(b) Show that $\left\langle G^{*}, \cdot\right\rangle$ is a group where $G^{*}=G-\{0\}$ is the non-zero elements of G and \cdot is the usual multiplication of real numbers. Hence $\left\langle G^{*}, \cdot\right\rangle \leq\left\langle\mathbb{R}^{*}, \cdot\right\rangle$
2. Prove that if $\langle G, *\rangle$ is a group such that $x * x=e$ for every $x \in G$, then G is an abelian (commutative) group. Is the converse of this statement true as well?
3. Given $(a, b) \in \mathbb{R}^{2}$, define $T_{a, b}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T_{a, b}(x, y)=(x+a, y+b)$. Consider $G:=\left\{T_{a, b}: a, b \in \mathbb{R}\right\}$ with the binary operation \circ of function composition. Is $\langle G, \circ\rangle$ a group? Is it a commutative group? What is the geometric interpretation of the map $T_{a, b}$? What is the geometric explanation for o being commutative or not?
4. Do problem 53 in section 5 of the textbook (page 58).
