
Big-O Notation and Analysis of Algorithms

Having a general idea about the running time of an algorithm is very important for both programmers and the

users. Big-O notation is designed to capture the worst-case running time of an algorithm as a function of the

size of the input.

De�nition: Big-Oh Notation

Let f, g : N→ R+. We say that f is �big-oh" of g, written f = O(g), or f ∈ O(g), if ....

Remark 1: A useful way of determining big-O of a function:

Remark 2: The big-O notation is not sensitive to multiplicative constants, lower order terms, or the basis of a

logarithm.

Example: a) f(n) = 2n3 + 3n2 + 100 b)f(n) = n+ 10
√
n+ log(n) c) f(n) = 2n + n7 + 103

Question: Suppose f(n) is O(g(n)) and g(n) is O(h(n)). Is it true that f(n) is O(h(n)) ?

Question: What is O(1)? What is O(n)?

Example 1: What is the best-case, worst-case and average case running time of the sequential search algorithm?

Example 2: What is the best-case, worst-case and average case running time of the binary search algorithm?

Example 3: What is the number of steps to solve the towers of Hanoi puzzle?



Example 4: What is the running time of the bubble sort algorithm? Is there any di�erence between the

best-case and worst case?

for i ∈ {1, 2, 3, ..., n− 1} do

for j ∈ {1, ..., n− i} do

if(xj > xj+1) then swap(xj , xj+1)

Example 5: Matrix multiplication. The following code multiplies two n× n matrices A and B, and stores the

result in another matrix C. Determine its running time in Big-Oh notation.

void matrixmult(int n, const int A[][n],const int B[][n], int C[][n])

{

int i,j,k;

for( i=1; i<=n; i++){

for( j=1; j<=n;j++){

C[i][j]=0;

for( k=1; k<=n;k++)

C[i][j]=C[i][j]+A[i][k]*B[k][j];}}

}

Polynomial Time Algorithms: An algorithm is called a polynomial time algorithm if

Size of the Input and Number Theoretic Algorithms Consider the brute-force algorithm to determine

whether a given integer is prime? PRIMES is in P.

Remark: If the input for a number theoretical algorithm is integer n, then the size of the input is taken to be

..................................... ......................................... which is ..........

Example: Computational Complexity of Addition, Multiplication and Division


