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Abstract

One of the main challenges of coding theory is to construct linear codes with the best possible parameters.
Various algebraic and combinatorial methods along with computer searches are used to construct codes with
better parameters. Given the computational complexity of determining the minimum distance of a code,
exhaustive searches are not feasible for all but small parameter sets. Therefore, codes with certain algebraic
structures are preferred for both theoretical and practical reasons. In this work we focus on the class of
constacyclic codes to first generate all constacyclic codes exhaustively over small finite fields of order up to 9 to
create a database of best constacyclic codes. We will then use this database as a building block for a search
algorithm for new quasi-twisted codes. Our search on constacyclic codes has revealed 16 new codes, i.e. codes
with better parameters than currently best-known linear codes. Given that constacyclic codes are well known,
this is a surprising result. Moreover, using the standard constructions of puncturing, shortening or extending a
given code, we also derived 55 additional new codes from these constacyclic codes. Hence, we achieved
improvements on 71 entries in the database of best-known codes. We use a search strategy that is
comprehensive, i.e. it computes every constacyclic code for a given length and shift constant, and it avoids
redundantly examining constacyclic codes that are equivalent to either cyclic codes or other constacyclic codes.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction and motivation

A linear code C of length n over Fq, the finite field with q elements, is a vector subspace of Fnq.
A linear code of length n, dimension k, and minimum (Hamming) distance (weight) d is referred
to as an ½n; k; d�q-code. One of the main problems in coding theory is to find the optimal values of
these parameters and to construct codes that attain them. There are theoretical bounds on how
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large these parameters could be. Most books on coding theory include these bounds (e.g. [21,22]).
A code whose parameters attain the optimal values is called an optimal code. Often, a code whose
parameters attain the best-known theoretical bounds is not known. In those cases we keep a record
of the best-known codes, codes that have explicit constructions and have the best set of parameters
among all known codes. There is an on-line table of best-known codes over small finite fields
(fields of order up to 9) which is updated as new codes are discovered and reported [16].
The computer algebra system Magma [9,20] also has such a database. Generally, optimal values of
the parameters are known only for the cases when k or n�k is small and they constitute a small
subset of all entries in the database. In most cases, there are gaps (i.e. potential improvements) on
the tables. In fact, researchers continually update the bounds on the tables by constructing new
codes that improve the records. Even still, the rate of discovery appears to be slow, considering the
many gaps still present in the table. This is partially attributed to the fact that it gets more difficult
to find new codes as these gaps narrow.
The main complication in constructing codes with best possible parameters is the

computationally taxing process of finding the minimum distance of a linear code. It is well-
known that almost all linear codes attain the Gilbert–Varshamov bound, one of the important
bounds on the parameters of a code, a lower bound on the size of a linear code. So, if we had an
efficient algorithm to compute the minimum distance of an arbitrary linear code, then
randomized algorithms could be used to construct codes with optimal or near optimal parameters.
However, it is proven in [27] that it is unlikely that such an algorithm exists: computing the
minimum distance of an arbitrary linear code is NP-hard (and the corresponding decision
problem is NP-complete).
Therefore, researchers focus on certain promising classes of codes with rich mathematical

structure that contain codes with good parameters. The class of quasi-twisted (QT) codes
(a generalization of quasi-cyclic codes) has been an excellent source for producing new codes.
A large number of new codes have been obtained from this class in the last few decades by
employing computer searches with various search strategies (e.g. [1,6,7,11–14,18,19,23–25]).
One of the most fruitful search methods was introduced in [6] and was used in many subsequent
works [12,14], not only for searching new codes over fields but over rings as well [5,3,4]. This
method relies on existence of cyclic (in searching for QC codes) or constacyclic codes (in
searching for QT codes) with good parameters (as large a minimum distance as possible). These
codes are then used as building blocks for constructing QC or QT codes with potentially new
parameters. Therefore, it is useful to have a database of best-known cyclic and constacyclic codes
for small finite fields. Our work in this paper was originally motivated by this goal. While we
constructed this database specifically to aid in this search method, a database of best-known
constacyclic codes (which contain cyclic codes as a proper subclass) may be of interest to other
researchers for additional purposes as well. We have started building this database and
researchers who may be interested in accessing it can contact the authors. We will use this
database to search for QT codes with new parameters in a subsequent work.
Since constacyclic codes have been known for a long time and have a mathematical structure

that makes them convenient for computer searches, one would expect that best constacyclic
codes have already been discovered. However, our search revealed 16 constacyclic codes that
improve the parameters of best-known codes given in [16]. We were surprised to find these many
new codes in the heavily studied class of constacyclic codes, and we suspect that our findings
fill a gap.
There are many methods of constructing new codes in the literature, from relatively

elementary search algorithms (e.g. [2,28]), to manipulation existent codes (e.g. [17]), and to more
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complicated methods that employ advanced tools in algebra or geometry (e.g. [15]). It is
preferable however, whenever possible, to create codes with convenient algebraic structures
through simple constructions. Since constacyclic codes are useful for both practical (shift
registers to implement them) and theoretical reasons, the uncomplicated construction of
constacyclic codes should make the results presented here more desirable, not less.

In the next section we review some of the basic properties of constacyclic codes. In Section 3,
we describe our search strategy, and finally in Section 4 we present the new codes obtained from
our search together with other codes that can be derived from the new constacyclic codes using
some of the standard constructions.

2. Constacyclic codes

The class of constacyclic codes has been known for a long time [8]. Their algebraic structure is
described in detail in [6]. Here, we review some of the basic facts about them that are more
relevant to our search.

Definition 1. Let a be a non-zero constant in Fq. A linear code C is called constacyclic if it is
closed under the constacyclic shift, i.e. whenever ðc0; c1;…; cn�1ÞAC then ðacn�1; c0; c1;…;
cn�2ÞAC as well.

Note that when the constant in the definition, called the shift constant, is taken to be 1 then we
obtain cyclic codes. Some of the most famous codes are instances of cyclic codes (hence of
constacyclic codes). These include BCH codes, Reed–Solomon codes (used in compact discs),
some Hamming codes, and quadratic residue codes.

We follow the usual convention of representing vectors as polynomials. With this representation,
it is well known that every constacyclic code has a polynomial that generates it as an ideal. In
general there are many generators for a given constacyclic code. However, if we consider the monic
generator of least degree then it is unique. Such a polynomial is called the canonical generator, or
simply the generator, of the code and it is a divisor of xn�a. Therefore, there is a one-to-one
correspondence between constacyclic codes of length n over Fq with shift constant a, and divisors of
xn�a.

Let C be a constacyclic code of length n over Fq with shift constant a and the generator g(x).
Then the dimension of C is k¼ n�degðgðxÞÞ with a basis fgðxÞ; xgðxÞ;…; xk�1gðxÞg. The
polynomial hðxÞ ¼ ðxn�aÞ=gðxÞ is called the check polynomial for C. The check polynomial has
the property that a word v(x) is in C if and only if hðxÞvðxÞ ¼ 0 in Fq½x�=〈xn�a〉. Either
polynomial can be used to define a constacyclic code. The BCH bound, one of the most
important facts about cyclic codes, has a version for constacyclic codes [6].

3. Search strategy

Since cyclic codes are a particularly important subclass of constacyclic codes, we first
generated all cyclic codes and examined their parameters for each finite field Fq,
q¼ 2; 3; 4; 5; 7; 8; 9 and for all lengths for which records of best-known codes are available in
[16]. This includes the case of repeated root cyclic codes [10,26] which is often excluded from
consideration in the literature. Given n and k, there are many cyclic codes of length n and
dimension k. For example, for n¼164, we see from the factorization of x164�1 that there are a
total of N ¼ 222 ¼ 4; 194; 304 cyclic codes over GF(3), and the number of cyclic codes
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of dimension k¼32 is 20
4

� �¼ 4845. Also note that a cyclic code may not exist for a given
dimension depending on the degree of distribution of the factors. In this example, there are no
cyclic codes of dimension k¼27 (or for any odd dimension). For each dimension for which
cyclic codes exist, we kept a record of the best cyclic code, a cyclic code with the highest
minimum distance (in case there are more than one with the same highest distance we chose one
of them arbitrarily).
Next, we considered each non-zero constant for a given field as a shift constant. It is important to

note that it is not necessary to examine every constant or every length for a given constant. It is proven
in [6] that when Fq contains an nth root of a, constacyclic codes of length n with shift constant a are
equivalent to cyclic codes of length n over Fq. Moreover, we know exactly when an element a has an
nth root in Fq [6]. Combining these results with the proposition below allows us to reduce the size of
the search space substantially to cover all remaining constacyclic codes once all cyclic codes are
obtained. For example, once all cyclic codes are obtained over F8, it suffices to consider only one (any
one) of the non-zero constants as the shift constant and only multiples of 7 as the length of the code.

Proposition 1. Let α; βAFq such that jαj ¼ jβj, where jαj denotes the order of α in the
multiplicative group of non-zero elements F�q of Fq. Then α has an nth root in Fq if and only if β
does.

Proof. ): Suppose α has an nth root in Fq and let θ be a primitive element of Fq. Then α¼ θr,
and β¼ θs for some positive integers r; s. Since jαj ¼ jβj, we have gcdðq�1; rÞ ¼ gcdðq�1; sÞ.
Since α has an nth root in Fq we know gcdðq�1; nÞjr. To show that β has an nth root in Fq, it
suffices to show gcdðq�1; nÞjs. Let d¼ gcdðq�1; nÞ. Then djq�1, djn and djr. Hence d is a
common divisor of q�1 and r which implies djgcdðq�1; rÞ ¼ gcdðq�1; sÞ. It follows that djs,
meaning β has an nth root in Fq. The other direction is proven similarly. □

The following table summarizes the shift constants and lengths to be examined for each finite
field q¼ 3; 4; 5; 7; 8; 9 where α is a root of x2 þ 2xþ 2.
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q
 aa0; 1
 n
3
 2
 All n 3 2jn

4
 Any constant in field
 All n 3 3jn

5
 2
 All n 3 2jn
4
 All n 3 4jn

7
 2
 All n 3 3jn
3
 All n 3 2jn or n 3 3jn

6
 All n 3 2jn
8
 Any constant in field
 All n 3 7jn

9
 α
 All n 3 2jn
α2
 All n 3 4jn

α4
 All n 3 8jn
We employed some additional strategies to make our search more effective in Magma, the
software we used. As we mentioned earlier, computing the minimum distance of a linear code is
computationally intractable. Therefore, despite all the efforts to optimize the computation of the
minimum distance in the case of cyclic codes, the MinimumDistance() function of Magma still
odes, Journal of the Franklin
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takes very long time to complete for many lengths and dimensions. This becomes problematic
when conducting a comprehensive search as a single minimum distance calculation may prevent
the program from advancing to other codes which are computable in a short amount of time. To
address this issue, we used the optional MaximumTime parameter for the MinimumDistance()
function. This parameter allows us to restrict the time allotted to calculating the minimum
distance of a single code to a certain specified time period. If this time limit was exceeded, the
calculation was terminated. The program recorded basic information about such codes and
progressed to the next code. Therefore, there are gaps in our database for some larger lengths and
dimensions where it was not possible to compute minimum distances of constacyclic codes in a
reasonable amount of time. It is an open problem to find a way to calculate the minimum
distances of these discarded codes, thereby completing our table.

Another function we employed is the VerifyMinimumDistanceLowerBound() function. A
code C, and value d, are passed to this function. This function is run until either d is found to be a
lower bound of the minimum distance of C, or returns false if it is not [9]. This can be
implemented to occasionally save time in the search process. For example, say C1 is an ½n; k1; d1�
code whose minimum distance has already been calculated and stored. If the program were to
generate an ½n; k2; d2� code, C2, such that k1 ¼ k2, before calculating d2, it would use
VerifyMinimumDistanceLowerBound() with the argument d1 þ 1 to check that d1 þ 1 is a lower
bound for the minimum weight of C2. If d1 þ 1 is not a lower bound for the minimum distance of
C2, we know that d2rd1. Thus, this code would be discarded. It is important to note, however,
that this only occasionally accelerates the search process. It is possible that it will take a long
time to verify that d1 þ 1 is a lower bound for the minimum distance of C2 and, in this case, the
function increases the computational time. Despite all the strategies employed, it was not
possible to calculate the minimum distance of every code that is in the parameter range of the
table [16]. For larger lengths, there are many codes whose minimum distances have not been
computed. They are waiting for even more effective search algorithms.

We give an example to show what entries in our database look like. Consider the field
F9 ¼ F3ðαÞ where α is a root of x2 þ 2xþ 2. The table below contains a record of best
constacyclic codes of length 30 with shift constant α. Note, w is the distance from the best-
known linear code of a given n and k (Table 1).

As a result of our searches, we found that in 16 cases these best codes turned out to be new
codes, i.e. each one has a minimum distance that is larger than the minimum distance of the best-
known code given in [16], hence improving the lower bounds on the minimum distances of
linear codes. We present all of these codes in the next section.

4. New codes

Here we list the parameters and generators of new codes. Note, in order to save space, either
the generator polynomial or the parity check polynomial is given, whichever has the smaller
degree (Table 2).

In addition to the new codes discovered using our search algorithm (given in the table above),
we are able to generate 55 more new codes through the standard constructions of extending,
puncturing or shortening a given code. Hence we achieved a total of 71 improvements on the
table of best-known code [16]. Listed below are the additional new codes derived from the new
constacyclic codes. We skip the details of the constructions for space consideration. For most
of these codes, the way they are constructed (derivations from othercodes) can be obtained
from [16].
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Table 1
Constacyclic codes of length 30 in GFð9Þ with shift constant α.

k d gðxÞ w

2 27 x28 þ 2x27 þ αx26 þ α2x25 þ α5x24 þ α5x23 þ α7x22 þ α5x21 þ 2x20 þ α3x18 þ α7x17 þ 2x16 þ α5x15 þ x14 þ x13 þ α2x12 þ x11

þ α7x10 þ α6x8 þ α2x7 þ α7x6 þ x5 þ α3x4 þ α3x3 þ α5x2 þ α3xþ α2
0

4 21 x26 þ α6x25 þ αx24 þ α5x23 þ 2x22 þ 2x21 þ αx20 þ α3x16 þ αx15 þ 2x14 þ x13 þ α7x12 þ α7x11 þ 2x10 þ α6x6 þ 2x5 þ α7x4 þ α3x3 þ α2x2 þ α2xþ α7 3
6 18 x24 þ α3x23 þ x22 þ α2x20 þ α3x19 þ 2x18 þ α7x17 þ α7x16 þ αx15 þ α2x13 þ α3x12 þ α5x11 þ α2x9 þ α3x8 þ α6x7 þ α6x6 þ x5 þ α2x4 þ α6x2 þ 2xþ 2 3
8 15 x22 þ α3x21 þ αx20 þ α2x19 þ α7x18 þ x17 þ α3x16 þ α3x15 þ α5x14 þ α3x13 þ 2x12 þ α6x11 þ α7x10 þ αx9 þ α6x8 þ α7x7 þ α2x6 þ α2x5 þ 2x4 þ α2x3 þ 2x2 þ αxþ α 4
10 14 x20 þ α2x19 þ x18 þ α2x17 þ α2x15 þ x13 þ αx12 þ α6x11 þ α3x10 þ αx9 þ α7x8 þ αx7 þ αx5 þ α7x3 þ x2 þ α5xþ α6 3
12 10 x18 þ α2x17 þ αx16 þ α3x15 þ x14 þ α6x13 þ α7x12 þ α3x11 þ 2x10 þ α7x8 þ αx7 þ x6 þ α2x5 þ α7x4 þ α5x3 þ α6x2 þ α2xþ α3 5
14 9 x16 þ αx15 þ α7x14 þ αx13 þ αx12 þ αx11 þ α6x9 þ αx8 þ αx7 þ α2x5 þ α5x4 þ x3 þ αx2 þ α6xþ 1 4
16 9 x14 þ α2x13 þ 2x12 þ α6x11 þ α5x10 þ α5x9 þ α6x8 þ αx7 þ αx6 þ α3x5 þ α6x4 þ α2x3 þ α3x2 þ 2xþ α5 2
18 7 x12 þ x11 þ x10 þ α3x9 þ x7 þ α7x6 þ α3x5 þ 2x3 þ 2x2 þ α7xþ α2 2
20 6 x10 þ 2x9 þ α7x8 þ α3x7 þ αx6 þ α6x5 þ 2x4 þ αx3 þ x2 þ xþ α7 1
22 5 x8 þ 2x7 þ α3x6 þ α7x5 þ α3x4 þ α2x3 þ αx2 þ α5xþ 2 1
24 3 x6 þ α7x3 þ α 2
26 3 x4 þ αx3 þ α5x2 þ 2xþ α6 1
28 2 x2 þ α5xþ α3 0
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Table 2
A table of new constacyclic codes.

q n gðxÞ or hðxÞ k d a

3 182 hðxÞ ¼ x22 þ x21 þ 2x20 þ 2x19 þ 2x17 þ x13 þ 2x11 þ 2x9 þ x8 þ x7 þ x4 þ x3 þ 2xþ 2 22 86 1
3 182 hðxÞ ¼ x24 þ x23 þ x22 þ x21 þ 2x19 þ 2x18 þ 2x17 þ x16 þ 2x14 þ 2x13 þ 2x10 þ 2x8 þ x7 þ x6 þ 2x5 þ x3 þ 2 24 84 1
3 182 hðxÞ ¼ x25 þ x24 þ x23 þ x21 þ 2x19 þ x18 þ x17 þ 2x15 þ x13 þ 2x11 þ x10 þ 2x9 þ 2x8 þ 2x7 þ x6 þ 2x5 þ 2x3 þ xþ 2 25 83 1
3 205 hðxÞ ¼ x17 þ 2x15 þ 2x14 þ 2x13 þ x10 þ 2x9 þ 2x8 þ 2x7 þ x4 þ 2x3 þ 2x2 þ 2 17 109 1
3 70 x22 þ x20 þ 2x19 þ x18 þ x16 þ 2x15 þ x14 þ 2x13 þ x11 þ x9 þ 2x8 þ x5 þ 2x2 þ 1 48 10 2
3 146 hðxÞ ¼ x24 þ x23 þ 2x21 þ 2x20 þ 2x16 þ 2x15 þ x13 þ x12 þ 2x11 þ x9 þ 2x8 þ 2x4 þ x3 þ 2xþ 1 24 66 2
3 146 hðxÞ ¼ x26 þ x25 þ x24 þ 2x22 þ 2x21 þ 2x20 þ 2x18 þ 2x17 þ 2x16 þ x14 þ x12 þ 2x10 þ x9 þ 2x8 þ 2x6 þ x5 þ 2x4 þ x2 þ 2xþ 1 26 62 2
5 78 x26 þ 4x25 þ 2x24 þ 2x22 þ x21 þ 3x19 þ x17 þ 4x16 þ 2x15 þ 2x14 þ x13 þ 3x12 þ 3x10 þ 3x9 þ 4x8 þ 3x6 þ 4x5 þ 3x4 þ 2x3 þ xþ 2 52 13 2
5 78 x24 þ 4x23 þ 4x22 þ x21 þ x20 þ x19 þ 4x17 þ 4x16 þ 3x15 þ 4x14 þ x13 þ 4x12 þ x10 þ x9 þ x8 þ 4x7 þ 3x6 þ 3x4 þ 4x3 þ 2x2 þ 1 54 12 2
5 78 x22 þ x21 þ 3x20 þ 2x19 þ 4x18 þ 4x17 þ x16 þ 4x15 þ 3x14 þ x11 þ x10 þ x8 þ 4x6 þ 2x5 þ x4 þ 4x3 þ 4x2 þ 4xþ 3 56 11 2
5 78 x18 þ 4x17 þ 4x15 þ x14þ 4x12 þ 2x11 þ 4x10 þ 4x9 þ 4x8 þ 3x7 þ 3x6 þ 4x5 þ 2x4 þ 2x3 þ 4x2 þ 2 60 9 2
5 78 x10 þ x9 þ 3x8 þ 2x7 þ 4x6 þ 3x5 þ 2x4 þ x3 þ 2x2 þ 2 68 6 2
7 48 hðxÞ ¼ x17 þ 3x16 þ 3x15 þ 6x14 þ 6x13 þ 5x12 þ x11 þ 5x10 þ 3x8 þ 2x7 þ 3x6 þ 2x5 þ 6x4 þ 3x3 þ 5x2 þ 2 17 22 1
7 57 x21 þ 2x20 þ 4x19 þ 2x18 þ 6x17 þ x16 þ 5x14 þ 6x13 þ 6x11 þ 3x9 þ 6x8 þ 4x6 þ 4x5 þ 6x4 þ 5xþ 4 36 13 3
7 57 x24 þ 4x22 þ 2x21 þ 5x20 þ 5x19 þ 2x18 þ x17 þ 2x16 þ x15 þ 6x14 þ x13 þ 2x12 þ 2x11 þ 6x10 þ x9 þ 4x7 þ 4x6 þ 3x4 þ x3 þ 3x2 þ 2 33 15 3
9 58 x28 þ α6x27 þ α2x26 þ αx25 þ α7x23 þ α6x21 þ x20 þ 2x18 þ 2x17 þ α5x16 þ α7x15 þ α2x14 þ x13 þ α7x12 þ α7x11 þ x10 þ α6x8 þ α5x7 þ x5 þ 2x3 þ α6x2 þ α3xþ α6 30 18 α
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½181; 24; 83�3, ½180; 24; 82�3, ½181; 23; 84�3, ½180; 23; 83�3, ½181; 22; 85�3, ½181; 25; 82�3,
½180; 25; 81�3, ½183; 25; 83�3, ½206; 17; 110�3, ½69; 47; 10�3, ½68; 46; 10�3, ½145; 24; 65�3,
½144; 24; 64�3, ½145; 23; 66�3, ½144; 22; 66�3, ½144; 23; 65�3, ½143; 23; 64�3, ½147; 24; 66�3,
½148; 24; 66�3, ½149; 24; 66�3, ½150; 24; 66�3, ½151; 24; 66�3, ½152; 24; 66�3, ½145; 26; 61�3,
½77; 51; 13�5, ½76; 50; 13�5, ½79; 52; 13�5, ½77; 53; 12�5, ½76; 52; 12�5, ½77; 55; 11�5, ½76; 54; 11�5,
½75; 53; 11�5, ½74; 52; 11�5, ½79; 56; 11�5, ½77; 59; 9�5, ½76; 58; 9�5, ½75; 57; 9�5, ½74; 56; 9�5,
½73; 55; 9�5, ½77; 67; 6�5, ½76; 66; 6�5, ½75; 65; 6�5, ½74; 64; 6�5, ½73; 63; 6�5, ½47; 17; 21�7,
½56; 35; 13�7, ½55; 34; 13�7, ½58; 36; 13�7, ½56; 32; 15�7, ½55; 31; 15�7, ½54; 30; 15�7, ½53; 29; 15�7,
½58; 33; 15�7, ½57; 30; 17�9, ½57; 29; 18�9.
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