- 1. Consider the field $GF(9) = \mathbb{Z}_3(\alpha)$ where α is a root of $x^2 + 1$ over \mathbb{Z}_3 . Construct an addition and multiplication table for GF(9). Is α a primitive element of GF(9)? If not, find a primitive element of GF(9).
- 2. Let $g(x) = x^2 + \alpha x + 2\alpha \in \mathbb{F}_9[x]$. Determine whether g(x) is irreducible over \mathbb{F}_9 . Justify your answer.
- 3. Consider the polynomial $x^{15} 1$ over \mathbb{Z}_2 . What is the smallest extension $GF(2^r)$ of \mathbb{Z}_2 that contains a primitive 15^{th} root of 1 (hence all the roots of $x^{15} 1$)?
- 4. Construct the field $GF(2^r)$ using a primitive polynomial of degree r over \mathbb{Z}_2 . Use Magma to verify (or generate) that your polynomial is primitive. Call a root of that polynomial a.
- 5. Use the cyclotomic cosets of 2 mod 15 and Magma to find minimal polynomials of all non-zero elements of $GF(2^r)$ (express all the elements of $GF^*(2^r)$ as powers of a). Recall that if $f(\alpha) = 0$ for a polynomial f over \mathbb{Z}_2 , then $f(\alpha^2) = 0, f(\alpha^4) = 0, \dots$ Exhibit the correspondence between cyclotomic cosets and factors of $x^{15} 1$.
- 6. Verify that the product of all minimal polynomials is equal to $x^{15} 1$.
- 7. Show how to construct a binary BCH code C of length 15 and designed distance 5. Give a generator polynomial of this code and find its dimension. What is its actual minimum distance?
- 8. Use Magma's database to show that the BCH code that you constructed is optimal, i.e., there does not exist a binary linear code of length 15 with the same dimension as C that has a larger minimum distance.