Practice with Big-O Notation

1) Let a and b be positive constants. Show that if f is $O(\log_a n)$ then f is also $O(\log_b n)$.

2) Suppose the size of the input is doubled for an algorithm (going from n to $2n$). Explain how the number of operations change for the algorithm if its Big-O complexity is

 a) $O(n)$ b) $O(n^2)$ c) $O(\log(n))$ d) $O(2^n)$

What if the size of the input increases by 1 (going from n to $n + 1$)?

Determine the running time of the following program segments in Big-O notation. Take the size of the input as n, unless otherwise stated.

3)
   ```
   double sum=0;
   for(int i=0; i<1000000; i++)
       sum+=sqrt(i);
   ```

4)
   ```
   while(n>1)
   {
       n=n/2;
       cout<<"This is a useless code";
   }
   ```

5)
   ```
   int count=0;
   for(i=0;i<n;i++)
   {
       count++;
   }
   ```

What happens if we take the size of the input as $\log(n)$ as opposed to n?

6)
   ```
   for(i=0;i<n;i++)
   {
       m=n;
       while(m>1)
       {
           m=m/2;
           cout<<m<<endl;
       }
   }
   ```
7)
for(i=0;i<n;i++)
{
 for(j=0;j<n;j++)
 {
 count++;
 }
}

a) Considering the size of the input as n
b) Considering the size of the input as $\log(n)$

8)
for(i=0;i<n;i++)
{
 for(j=i;j<n;j++)
 {
 count++;
 }
}

9)
int i, j,k;
for(k=0;k<n;k++)
{
 for(i=0;i<n;i++)
 {
 j=n;
 while(j>1)
 {
 j=j/3;
 cout<<i*j*k<<endl;
 }
 }
}

for(i=0;i<n;i++)
{
 cout<<i*i<<endl;
}