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"Alhazen ' s  p r o b l e m " ,  * or  "problema Alhaseni (or  Alhazeni)", is the name  
given by  seventeenth-century mathemat ic ians  to  a p rob l em which they encoun-  
te red  in the Optics of  AL-HASAN IBN AL-HAYTHAM. The Optics, composed  in the 
first ha l f  o f  the eleventh century,  h a d  been t rans la ted  into  La t in  in the late  twelf th 
o r  ear ly  th i r teenth  century,  1 and  an edi t ion o f  it  by  FRIEDRICr~ RISNER had  been 
publ i shed  at  Basel in 1572. 2 CHRISTIAAN t-ItJYCENS fo rmula t ed  the p r o b l e m  as 

• A shorter version of this paper was read at the annual meeting of the History 
of  Science Society which took place in New York in December 1979. I am grateful to 
A. ANBOUBA, J. L. BERGGREN, J. P. HOGENDUK and E. S. KENNEDY for comments, sug- 
gestions and corrections on all or part  of this paper. All  errors and shortcomings that 
remain are of course my own. The attached translation of IBN AL-HAYTHAM'S lemmas is 
part  of a project involving an edition and English translation of the Arabic text of  IaN 
AL-HAYTHAM'S Optics (Kitab al-Man~z.ir). I wish to thank the U. S. National Science 
Foundat ion and the National  Endowment for the Humanities, for their support of this 
research. 

1 Neither the name of  the translator(s), nor the place or exact date of the translation 
has been ascertained. Of the twenty odd manuscripts that have been located in European 
libraries, the eafliest are from the thirteenth century, and one of these (the Edinburgh 
Royal Observatory MS CR3.3 -~ MS 9-11-3(20)) is dated 1269 (see D. C. LINDBERG, 
A Catalogue of Medieval and Renaissance Optical Manuscripts, Toronto:  The Pontifical 
Institute of Medieval Studies, 1975, pp. 17-19). The earliest mention of the Latin version 
of  the Optics in the West occurs in a work by JORDANUS DE NEMORE who flourished in 
the period between 1220 and 1230 (see MARSHALL CLAGETT, Archimedes in the Middle 
Ages. Vol. I :  The Arabo-Lat in Tradition, Madison: University of Wisconsin Press, 1964, 
pp. 668-9 and 674). 

2 Opticae thesaurus. Alhazeni Arabis libri septem, nunc primum editi. Eiusdem liber 
De crepusculis et nubium ascensionibus. Item Vitellonis Thuringopoloni libri X. Omni 
instaurati, figuris illustrati et aucti, adiectis etiam in Alhazenum commentariis, a Federico 
Risnero. Basel, 1572. (Reprinted, New York:  Johnson Reprint Corporation, with a 
valuable Introduction by D. C. LINDBERG.) 'Opticae thesaurus' is deaf ly  the collective 
title of the whole volume and should not be cited as the title of ALHAZEN'S 'seven hooks, '  
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that of finding the point of reflection on the surface of a spherical mirror, convex 
or concave, given the two points related to one another as eye and visible object, a 
He had found IBN AL-HAYTHAM'S treatment of the problem "too long and weari- 
some" (longa admodum ac tediosa), 4 and, armed with the tools of modern algebra 
and analytic geometry, he set out to produce a solution of his own- -a  task which 
he finally fulfilled to his own satisfaction in 1672, having proposed an earlier solu- 
tion in 1669. 

"Long and wearisome" though IBN AL-HAYTHAM'S treatment may have been, 
it certainly represented one of  the high achievements of Arabic geometry, and its 
importance for the history of mathematics in Europe down to the seventeenth 
century is easily recognizable. HUVGENS' brief and elegant solution was itself 
based on the same idea which IBN AL-HAYTrtAM had used six hundred years 
earlier--the intersection of a circle and a hyperbola. 

This paper is concerned with "Alhazen's problem" as it appears in IBN AL- 
HAYTHAM'S Optics. The problem of finding the reflection-point occurs in this 
book as part of  a long series of  investigations of specular images which occupy 
the whole of  Book V, and these investigations in turn presuppose a theory of  
optical reflection which is expounded in Book IV. Much of the character of  IBN 

as is often done. The seven books were together known in the Middle Ages as Perspectiva 
or De aspectibus, the titles sometimes shown in the extant manuscripts. It may be inter- 
esting to note that when the emir (or admiral) EUGENE OF SICILY translated PTOLEMY'S 
Optics from the Arabic into Latin in the twelfth century, he chose as the title the original 
Greek 'Optica' rather than any Latin rendering of the Arabic 'al-man?lzir' (see L'Optique 
de Claude PtolOmde clans la version latine d'aprks l'arabe de l'dmir EugOne de Sicile, edi- 
tion critique et ex6g6tique par ALBERT LEJEUNE, Louvain: Biblioth6que de l'Universit6, 
1956). EU6~N~, whose native tongue was Greek, had access to the Greek text of EUCLID'S 
Optica which, like the works of PTOLEMY and IBN AL-HAYT~IAM, was called in Arabic 
Kit~b al-Man-dzir. On EUGENE see C. H. HASI(INS, Studies in the History of  Medieval 
Science, New York: Frederick Ungar Publishing Co., 2nd ed., republished 1960, pp. 
171ff. 

3 See Oeuvres completes de Christiaan Huygens, vol. XX (Musique et Math6matique 
Musique. Math6matiques de 1666 5. 1695), La Haye, 1940, pp. 207, 265-71, 272-81, 
328, 329, and 330-33; see especially p. 265. In 1669 HUV6ENS expressed the problem 
in optical terms: "Dato speculo sphaerico convexo aut cavo, datisque puncto visus et 
puncto rei visae, invenire in superficie speculi punctum reflexionis" (ibid., p. 265). In 
1672 the formulation became purely mathematical: "Dato circulo cujus centrum A 
radius AD, et punctis duobus B, C. Invenio punctum H in circumferentia circuli dati, 
unde ductae liB, HC faciant ad circumferentiam angulos aequales" (ibid., p. 328; also 
vol. VII, pp. 187-9). See note 4 below. 

4 Ibid., p. 330. ISAAC BARROW was another mathematician in the seventeenth century 
who was annoyed by the excessive length of IBN AL-HAYTHAM'S solution. In Lecture IX 
of his Lectiones XVIII  cantabrigiae in scholis publicis habitae (first published at London 
in 1669), he described IBN AL-HAYa~AAM'S demonstrations as "horribly prolix" (see p. 74). 
Neither HuYG~NS nor BARROW was, however, concerned to explain the character (ob- 
jectionable or otherwise) of IBN AL-HAYa~AM'S method of solution. Their approach was 
that of mathematicians, not of historians of mathematics. See the relevant remarks by 
SAB~TAI UNCURtS in his edition and English translation of Witelonis Perspectivae liber 
Primus (Studia Copernicana XV), Wroctaw, etc.: Ossolineum (The Polish Academy 
of Sciences Press), 1977, pp. 209-12. 
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AL-HAYTHAM'S treatment of reflection-points can only be appreciated if under- 
stood with reference to this wider context. It should also be mentioned that IBN 
AL-HAYTHAM'S researches extended to cylindrical and conical as well as spherical 
mirrors. IBN AL-HAYTHAM was therefore aiming to solve a wider and more com- 
plex set of problems than "Alhazen's problem" in HUYGENS' limited sense. Here, 
however, I am only concerned to give an account of that aspect of IBN AL-HAY- 
THAM'S treatment which can be directly related to HUYGENS' formulation, and to  
present a full translation of  the six lemmas which IBN AL-HAYTHAM proposed for  
solving the problem in all its generality. The clarifications which I hope to make 
are intended to be part of a more comprehensive study. 

The limited problem with which we shall be concerned is, therefore, that o f  
finding the point of  reflection on the surface of a spherical mirror. Let us begin 
with IBN AL-HAYTHAM'S solution as applied to the case of a convex mirror. 

A and B (in Fig. 1.1) are, respectively, the given locations of the eye and the 
visible point. G is the centre of the mirror with a radius GD, given in magnitude. 
The plane of the circle is that containing lines AG, BG; and it is proposed to find 
on the circumference of the circle a point D, such that AD and DB will make 
equal angles with the tangent at D. 

IBN AL-HAYTHAM takes at random a line M N  (Fig. 1.2), which he divides in 
a point F, such that 

M F  BG 

F N  GA " 

From point O at the middle of M N  he draws the perpendicular OC, on which 
he takes a point C, such that 

1 
~ O C N  = -~- AGB.  

Then, and this is the crucial step, through F, he draws line QFS, cutting N C  
in Q and the extension of  CO in S, so that 

SQ BG 

Q N  GD " 

Now IBN AL-HAYTHAM shows, before coming to this proposition, that tw~ 
such lines can be drawn through F, producing two unequal angles at N. He takes 
the case of the larger of the two angles and further assumes that angle SNQ is, 
obtuse. ([ have reversed the order of presentation to spare the reader some of the. 
suspense, but I shall return to this crucial construction.) 

Having made this assumption, the construction of Figure 1.1 proceeds as follows: 
Draw GD at an angle BGD equal to SQN: this gives the position of D which is 

now to be shown to be the point of reflection of the light from B to A. 
IBN AL-HAYTHAM continues as follows: He produces GD to E and draws line 

Z D T  tangent to the circle at D. 
He then draws D K  at an angle GDK equal to angle QNF (Fig. 1.1), and B R  

perpendicular to the extension of DK. (He can do the latter because angle GKD 
is acute.) 

He fur ther  extends DR to /, so that IR  is equal to RD, and joins BI. 
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Fig. 1 

Finally, he draws DL parallel to BI, constructs angle L D H  equal to AGB, 
and draws l i t  parallel to BD. 

He proves that the extension of H D  cuts GA at precisely point A, and finally 
deduces the equality of  the angles made by AD and BD with DE, the normal to 
the tangent at D. 

Figure 1 is not shown in the extant manuscripts of Book V of IBN AL-HAY- 
Trr_~M'S Optics. It  is here constructed from the edited text of the Optics. 5 The in- 
ferred figure is essentially similar to the corresponding figures in KAM~,L AL-DIN'S 
commentary 6 and RISNER'S edition of the medieval Latin translation, but is not 
identical with them. 

I have deliberately added only one feature--the discontinuous line DA' 
as a hypothetical rectilinear extension of line HD. This merely simplifies the lan- 
guage of the proof  without altering it in any other way. 

Let us, then, say that HD produced cuts GA at point A'. 
To prove that A' coincides with A, and, therefore, that H D A  is a straight 

line, ]~BN AL-HAYTHAM has to show that GA' is equal to GA. 
This he does by first considering triangles D H L  and GHA',  which are similar 

by  construction, and this gives him: 

D H  HG 

DL -- GA'" 

Then he shows, again by consideration of similar triangles, that 

F r o m  which it follows that 

s See below, n. 16. 

D H  HG 

DL -- GA" 

GA' = GA. 

6 The "Commentary" by KAMT~L AL-DIN AL-]7~ISi on IBN AL-HAYTHAM'S Kitab 
~l-ManTzzir, known as Tanq~h. al-ManFtz.ir, is believed to have been completed around 
A.D. 1300. KAMT, L AL-DiN died in A.D. 1320. The Tanq~h. has been published in an 
,unsatisfactory edition in two volumes at Hyderabad, Dn. in 1928-1930. 
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(2) 

Since 

(His proof  involves taking HD as a mean proportional between BD and DL, 
i.e. 

BD BD H D ( B G )  
(1) ~ -- HD ~ ---- ~ ' 

and HG as a mean proportional between BG and GA, i.e. 

BG BG HG 

GA HG GA 

BD BG 

HD ( =  Ht)  H G '  

it follows, by substitution in (1), that 

D H  HG 
(3) DL -- GA " ) 

Let us now return to the construction of the key figure on the right. IBN 
AL-HAYTHAM'S chief contribution to the solution of this problem (and of the larger 
problem of  finding the reflection-point or points on the surface of mirrors of  
other shapes) consists in the formulation and proof  of  six propositions or, as he 
properly calls them, lemmas (muqaddamfit) 7 which form the basis of  his proofs. 
Except for elementary cases, some of which had been treated by PTOLEMY, s all 
constructions of  reflection-points are presented by him as applications of  these 
lemmas. In modern accounts of  IBN AL-HAYTHAM'S theory of optical reflection 
these lemmas are either ignored, cursorily dealt with, or re-formulated in modern 
terms. In what follows I shall try to keep as close as possible to IBN AL-HAYTHAM'S 
procedure, my aim being largely to guide the reader through IBN AL-HAYXHA~'S 
text. 

Figure 2 is not from the Optics; it is a modern representation of two of I~N 
AL-HAYTHAM'S lemmas, the first and the second. I have chosen to start with this 
figure because, being modern, it is quickly understandable, and it has the advantage 
(from the point of  view of historical analysis) of  being close to IBN AL-HAYTHAM'S 
own figures. I t  is here reproduced, with some changes, f rom the important study 
published by M. NAZiF in 1943. 9 

7 I write muqaddamTlt (in the passive) and not muqaddim?tt. A muqaddama is that 
part of a proof which is put forward. 

s See ALBERT L~JEUNE, Reeherehes sur la eatoptriqae grecque, Brussels: Acad6mie 
Royale de Belgique, 1957, pp. 71 ft. 

9 M. NAZ.iF, al-Hasan ibn a#Haytham, buh-ffthuhu wa kushufuhu al-bas.ariyya, 2 vols., 
Cairo: Fouad I University, 1942-1943. This contains the best and most detailed study 
of  IBN AL-HAYTHAM'S treatment of the reflection-point(s) problem in any language; 
see vol. II, pp. 487-589. The two best historical accounts of "Alhazen's problem" in a 
European language are P. BODE, "Die Alhazensche Spiegelaufgabe in ihrer historischen 
Entwicklung ...", in Jahresberieht des Physikalisehen Vereins zu Frankfurt am Main, 
for 1891-1892 (1893), pp. 63-107; and J. A. LOHN~, "Alhazens Spiegelproblem", in 
Nordisk matematisk tidskrit, 18 (1970), pp. 5-35 (with bibliography). For the transmission 
of IBN AL-HAYTHAM'S problem to the Latin Middle Ages (in so far as it relates to conic 
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Fig. 2 

We are given a po in t  A on  the c i rcumference o f  a circle wi th  d iameter  BG; 
and  we are requi red  to  d r aw  a line tha t  cuts the c i rcumference at  a point ,  l ike H,  
and  the d iamete r  or  its extens ion at  ano the r  point ,  l ike D, such tha t  D H  equals  
a given line KE. 1° 

sections), see MARSHALL CLAGETT, Archimedes in the Middle Ages, vol. IV (A supplement 
on the medieval Latin traditions of conic sections, 1150-1566), philadelphia:  The Ameri- 
can Philosophical Society, 1980, Chapter 1, pp. 3-31. 

lo Or, to phrase the problem differently, it is required to place between the diameter 
BG (or BG produced) and the circumference of the circle ABG a line equal to KE and 
verging towards the given point A. This is a particular case of the type of  problem known 
to the Greeks as neusis (verging). PArPUS, in his Mathematical Collection, presents several 
cases of the problem including that in which it is required to place a straight line of a 
given length between two straight lines given in position and verging towards a given 
po in t - - a  construction which, he tells us, the Greeks had ultimately solved by the use 
of  conic sections. He himself shows a solution by means of the intersection of a hyper- 
bola and a circle. The Greeks used the neusis as an intermediate step in the solution of  
the problem of trisecting an acute rectilineal angle. Their procedure appears to have 
become known to the Baghdad mathematicians of the ninth century, though not through 
direct translation of PAPPUS' text. J. P. HOGENDIJK sheds light on the transmission of  
this Greek method into Arabic, in "How trisections of the angle were transmitted from 
Greek to Islamic Geometry",  Historia Mathematica, 8 (1981), pp. 417-38. 

It may be noted further that Prop. 8 in the Liber assumptorum (attributed to ARCHI- 
MEDES but found only in Arabic) assumes (without proof) a neusis construction in which 
a line segment of given length is to be placed between the circumference of a circle and the 
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Join AG, AB  and produce the mon both sides to form the rectangular axes x 
and y with A as origin. 

Draw G M  parallel to AB, and let it cut the circumference of the circle ABG 
in M. 

Through M draw the hyperbola whose asymptotes are the two axes. 
Then find the line M C  whose product with KE is equal to the square of  the 

diameter BG, i.e. 

M C "  KE = BG 2, 
o r  

M C - -  
KE 

The circle about M, with radius MC, will, in general, cut the two branches of 
the hyperbola in four points--let these be C, S, C', S'. 

Join the lines MC, MS,  MC' ,  MS ' .  
Then each of the lines drawn from A parallel to these four lines will be the 

required line. 
For example, line AHD,  drawn parallel to M C  cuts the circumference at H 

and the extension of the diameter BG at D, such that D H  = KE. 
In Figure 3 all four parallel lines are shown: 

AH2D2, parallel to MS,  cuts the circumference in H2 

extension of the circle's diameter, such that the line segment verges towards a given point 
on the circle's circumference. Similar cases of neusis construction occur in ARCHIMEDES' 
work On Spirals, again without proofs. See T. L. HEATH, The Works of Archimedes, 
New York: Dover Publications, Inc. (reprint of 1912 edition), undated, Introduction, 
ch. V, pp. c-cxxii; A History of  Greek Mathematics, vol. I (Oxford: The Clarendon 
Press), pp. 235-41; A Manual of  Greek Mathematics, New York: Dover Publications, 
Inc. (reprint of the Oxford edition of 1931), pp. 147-52. 

AB~ SAHL AL-Q~Hi, who flourished at Baghdad some fifty years before IBN AL- 
HAYTHAM died (see Dictionary of  Scientific Biography, XI (1975), pp. 239-41), in a letter 
to AB~ Isn. XQ AL-SXBF (MS Ayasofya 4832, pp. 133b-140 a, especially 138a-139 a) assumes 
the solution of the following verging problem: to draw from a given point outside a given 
angle a line that cuts the sides of the angle, such that the intercept between these sides 
equals a given line. Instead of providing a proof AL-QUHi simply says "We have shown 
how to do this in many places and it may often happen (rubba-m?t yattafiqu) that we do 
not need [for this purpose] to resort to conic sections" (p. 138b). (J. L. BERGGREN drew 
my attention to this passage.) It is known that IBN AL-HATrIAM was acquainted with at 
least some of AL-Q~rIi'S works (see, for example, R. RASHED, "La construction de l'hepta- 
gone rtgulier par Ibn al-Haytham," Journal for the History of Arabic Science, 3 (1979), 
p. 341 (French), p. 228 (Arabic)). But the whole question of IBN AL-HAYTHAM'S sources 
remains largely unexplored. That he was well versed in the methods of Greek higher mathe- 
matics is clear from several of his writings (including the Optics) and from the fact that 
he felt able to attempt a reconstruction of the lost book VIII of APOLLONIUS' Conics. 
This reconstruction, extant in a unique MS in Turkey (Manisa, Genel 1706, lb-25b; see 
F. SEZGIN, Geschichte des arabiscen Schrifttums, V (Leiden: E. J. Drill, 1974), p. 140), 
and published in facsimile by NAZIM T~RZIO~LU as Das achte Buch zu dem "Conica'" 
des Appollonios yon Perge, rekonstruiert von Ibn al-Haysam, Istanbul, 1974, is being 
studied by J. HOGENDIJK of the University of Utrecht. 
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and GB produced in Dz; 

ADaHa, parallel to MS', cuts the circumference in Ha 

and the diameter in Da; and 

ADgH4, parallel to MC', cuts the circumference in H4 and 

the diameter in D,.  
As in the case of  AHID1, the portion of each one of these lines between the 

circumference and the diameter is equal to the given line KE. That is HAD2, 
I-I303, 9404 are each equal to KE. 

The construction in Figure 3 therefore yields a general solution of our problem. 
But before we turn to IBN AL-HAYTHAM'S lemmas it should be noted that while 
the circle with radius MC will always cut the branch of the hyperbola through M 
in two points, three possibilities exist with regard to the other branch: 

(a) the circle may cut it in two points, as in the figure (and this makes it 
possible to draw two lines satisfying the stated condition), 
or 

(b) the circle may touch that branch at one point (and this allows the construc- 
tion of one line satisfying the stated condition), 
o r  

(c) the circle may fall short of it altogether (and in this last case the required 
line cannot be constructed). 
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All this simply follows from the fact that the radius of  the cutting circle, MC, 

is equal to BGZ/KE and therefore depends on KE. 
With this picture in mind, IBN AL-HAYTHAM'S own procedure should now be 

easy to follow. As in all of  his proofs, the problem is divided into particular cases 
which are taken up one by one. Figure 4 represents what I shall call case (a) in 

E Z 
I 

A 

Fig. 4 = Lemma I 

the first of  the six lemmas: the given point A on the circumference of  the circle 
having the diameter BG lies at the middle of  the semi-circle BAG; and we are to 
draw a line, as AHD, cutting the circumference in H and the extension of BG 
(in this direction) in D, such that HD is equal to the given line KE. 

KE is produced to Z such that 

K Z .  Z E  = AG z (KZ > AG) 

and AT, equal to KZ, is drawn through G. 
The circle about  A with radius A T  will cut the extension of the diameter BG, 

say at D, 
and line AD will cut arc AG in H .  

The required line is HD--which  follows from the observation that  triangles 
AGD, AHG are similar. 

Case (b) in Lemma I is more complicated; it admits of three sub-cases (Fig. 5). 
The required line may be tangent to the circle at the given point A (as in 1), or 
it may cut the circle at a second point H which may lie on arc AG (as in 2), or 
on arc BA (as in 3). 

IBN AL-HAYTHAM provides proofs for all these cases, all based on the construc- 
tion on the left. It  is this construction which should now be described. 

TN is a line taken at random. 
Having drawn GZ (say in case 1) parallel to BA, the following angles and lines 

are then constructed: 
<):TNL = <):DGA, 

<):TNM = <f.DGZ, 

line M T  // line LN,  
and 

line TQ // line M N .  
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Fig. 5 = Lemma I 

Referring to APOLLONIUS' Conics, Bk. II, Prop. 4, IBN AL-HAYTHAM then 
draws the branch of the hyperbola through M, with QT, Q L  as asymptotes 
(the similarity with Fig. 2 is apparen 0. 

On the branch S M W ,  take a point C, such that 

M C  BG 

T N  - -  K E "  

Referring again to APOLLONIUS' Conics, Bk. II. Prop. 8, IBN AL-HAYTHAM 
states that the extension of M C  on both sides will cut the asymptotes in points 
O and L, such that 

O M  = L C .  

Draw T F  parallel to OL, cutting N M  in J. 
Since surface T M L F  is a parallelogram, and so also is surface T O M  J, it follows 

that 
M C  = J F ,  

and therefore 
J F  BG 

T N -  K E "  

If  A Z  is now drawn at an angle 

G A Z  = N F T ,  

it will cut BG produced--say at D. 
IBN AL-HAYTHAM shows, with reference to each of the three cases separately, 

that line A D  will meet the cricumference at H and the extension of the diameter 
at D, such that H D  .= KE. 

The difficulty with IBN AL-HAYTHAM'S approach, as compared with that of 
seventeenth-century mathematicians, becomes immediately apparent when we 
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note that Lemma I, consisting of four particular cases, is designed to take care 
of  only one of the four lines in our reference Figure 3, namely line AD1 which 
cuts the extension of the diameter BG on the side of  G. IBN AL-HAYTHAM says 
nothing about line AD2, cutting the extension of  the diameter on the other side. 
But he provides a second lemma for the construction of lines AH3, AH4 which 
intersect the diameter itself. A brief look at this lemma will also be instructive. 

In Figure 6, constructed from the text of Lemma II, A (in the right-hand 
figure) is the given point on the circumference of the circle with diameter BG; 
and we are to draw from A a line that cuts BG and the circumference in two 
points, such as E, D, so that DE is equal to the given line HZ. 

G 

Fig. 6 = Lemma II 

Having drawn AB, AG, IBN AL-HAYTHAM constructs angles H1 and H2 on 
either side of HZ, equal to angles B1 and G2 respectively. He completes the par- 
allelogram HKZT, and draws through T the branch of the hyperbola with KH 
and KZ as asymptotes. Then, with T as centre and a radius equal to BG, he draws 
a circle that, according to his own explicit remarks, may or may not cut the oppo- 
site branch of  the hyperbola. His text, however, is concerned with the case in 
which a meeting of the circle and that branch does take place, for example, at 
point S. 

He joins TS, cutting the asymptotes at F and Q; and, through point Z, he 
draws LZM parallel to TS, and, like TS, cutting both asymptotes. LZM will cut 
the extension of  HT, say in M. Finally, he draws GD at an angle with BG equal to 
MLH, and joins BD. 

Considerations of the similar triangles indicated in the figure entail the equality 
of  DE to the given line HZ. 

The corresponding figures in RISNER and in KAMAL AL-DiN, inadequately 
and inexactly drawn, do not include the circle through S or the discontinuous line 
TS1. This seems to reflect IBN AL-HAYTHAM'S remarks just referred to. He states 
that from T on one branch of the hyperbola, it may not be possible to draw more 
than one line that reaches the other branch. This, of  course, would be the case 
when the circle touches that other branch at a point. He also notes that in some 
cases two such lines may be drawn (as in our Fig. 6), and, further, that for the 
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construction of the required line to be at all possible, it is necessary that  BG, 
equal to the radius of  the circle, must not, in his words, "be shorter than the 
shortest line that can be drawn from T to section S W " .  ~1 As to the question of 
how this shortest line should be determined he refers the reader to Propositions 34 
and 61 of Bk. V of  the Conics--a correct reference which is omitted in RrSNER. 

So much for that part  of  IBN AL-HAYTHAM'S proof. The next steps are not 
difficult to follow, but IBN AL-HAVTHAM'S method of procedure remains the same. 
Lemmas I I I  and VI are particular cases of  one problem, and they establish their 
conclusions by reference to Lemmas I and I I  respectively. 

Figures 7.1 and 7.2 are drawn from the text of  Lemma III.  In the triangle 
ABG, B is a right angle, and D a point given on BG (as in Fig. 7.1) or on its exten- 

H 
Z K 

C " 'E / ~ I / , . ~ L  

N 

2 1 

Fig. 7 = Lemma III  

sion toward B (as in Fig. 7.2). It  is required to draw from D a line that cuts the 
hypotenuse in a point, as T, and AB or its extension in another point, as K, 
such that 

TK is to TG in a given ratio (E: Z) .  

F rom now on it will be easier to concentrate on Figure 7.1. Join AD; draw 
D M  parallel to BA and describe the circle about  the right-angled triangle MDG, 
which will have GM as diameter. 

Construct angle D M N  equal to angle DAG. 
N will be on arc DG (Fig. 7.1), or on arc MG (Fig. 7.2). 
Three more steps complete the figure. First, construct a line H, such that  

AD E 
H = z - ( t h e  given ratio). 

Then, applying Lernma 1, draw from N the line NCL, so that CL, the distance 
between the line's intersection with the circumference and the extension of diam- 
eter MG, is equal to H. 

Now join DC and produce it in a straight line: it will cut LM,  say in T. 
And join GC. 

~ See below, p. 318. 
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IBN AL-HAYTHAM shows that D T  produced will cut BA produced (in Fig. 7.1) 
in a point K such that 

~ A K T  = ~ T D M  = <~TGC. 

Finally, f rom the similarity of  triangles A K T  and CGT, and also triangles 
L C T  and ADT, it follows that 

KT A T  AD AD E 
- -  - -  Q.E.F. 

TC--  r C - -  CL H z '  

The remaining case in this problem, represented by Lemma VI, relates to  
Figure 1.2, i.e. the auxiliary figure for the construction of the reflection-point 
on the surface of a spherical convex mirror. 

B G 

T 

/] C 
I/11 

I / E 
5 ' 

/ 5  

Fig. 8 = Lemma VI 

Here (Fig. 8) from point D on side BG of the right-angled triangle ABG, 
we are to draw a line that cuts the hypotenuse in K and the extension of AB in 
T, such that 

K T  E 
- - a  given ratio. 

K G - - Z  

This IBN AL-HAYTHAM achieves on the basis of  Lemma II  which allows him to  
draw line CLN, cutting the diameter of  the circle about MDG in L and the circum- 
ference in N, such that 

L N  = H, 
where H is determined by 

AD E 
- -  , the given ratio. 

H Z 

We know, however, that it may be possible in this case to draw a second 
line, as CL1N~, which satisfies the stated condition, namely such that L~N1 = H~ 
I f  that is the case, then, in addition to line NKDT, another line NIK~DT~ can 
be drawn so that TIK~ is to K~G as E is to Z. Again the figures in RISNER and 
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in KAM~L AL-DiN do not show the discontinuous lines in our figure. But IBN AL- 
HAYTHAM'S text is explicit. This is what he says: 

" . . .  it was shown earlier [i.e. in Lemma II] that there issue from point C two 
lines such that the segment of each of  them that lies between the circle and the 
diameter [here segments LN and LIN~] will be equal to the given line [HI. 
Thus i f  two such lines are drawn from C, then there will issue from point D 
two lines in the given ratio; but the two angles produced at point G will be 
unequal ... [he means the angles made by TG or T1G with AG]. ''~2 

This concluding comment is paraphrased in RISNER without the reference to 
the unequal angles at G. 13 

We come now to an important step in IBN AL-HAYTHAM'S procedure, represent- 
ed  by Lemma IV. 

In the plane of  the circle with radius BG (Fig. 9.1), two points, say D and E, 
are  given: and we are to find on the circumference of the circle a point A such that 
the tangent at A (AH in the figure) bisects the angle contained by AD and AE. 

N ~ t9, 

I 

/ T T ~  ~'K 1 

Fig. 9 = Lemma IV 

Rather than summarize the proof, which is long, I shall be concerned to point 
~out some features of it. The proof  makes use of Figure 9.2 which is but case 2 
o f  Lemma III (see Fig. 8.2), where from D on the extension of GB in the right 
triangle ABG, a line DKT is to be drawn, so that TK is to TG in a given ratio. 

Similarly, to go back to Figure 9.2, SQFis drawn so that QF to FM is in a given 
ratio ( - - in  this case, EG to GB in Fig. 9.1). 

Now it is clear that the condition stated in this Lemma (that the tangent at A 
bisects angle DAE) is a particular case of a more general condition that can be 
stated by requiring that the tangent AH should make equal angles with AD and 

12 See below, p. 324. Emphasis added. 
23 Opticae thesaurus. Alhazeni libri septem, sec. 38, p. 150. 
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A E ,  without necessarily bisecting the angle contained by these two lines. Starting 
from this observation, NAZiF provides a generalized construction for Lemma IV 
that yields four points satisfying the more general condition. 14 This, in turn, 
yields a general solution of the problem of finding the reflection-point on the 
surface of a spherical concave mirror. 

Figure 10 is an illustration of  NAZiF'S construction, where A and B are the 
positions of  the eye and the visible object respectively, and P1, P2, Pa and P~ 
are reflection-points on the surface of the concave mirror with radius G M .  

K B N 

P2 
P3 

Fig. 10 

NAZiF'S construction is valid inasmuch as it is based on Lemmas III and VI 
which together comprize four possible cases. It does not, however, reflect IBN 
AL-HAYTHAM'S intention, which (as NA .ZiF also points out) 15 is obviously to propose 
a particular construction (in which one of the two given points lies outside the 
circle) with a particular application in mind. 

A similar observation applies to Lemma V. In Figure 11, E is a point given 

G 

C 

D S 

Fig. 11 = Lemma V 

14 NAZ.iF, op. cir., VO1. II, lap. 515-27. 
15 Ibid., pp. 524-7. 



314 A.I.  SABRA 

outside the circle with radius BG; and it is required to draw from E a line that 
cuts the circumference in a point like D and the diameter in a point like Z, so 
that 

D Z  = ZG.  

Having drawn the perpendicular ES, IBN AL-HAYTHAM takes a line K T  = ES  
on which he describes the segment of a circle that admits an angle equal to BGE. 

Then, having drawn the diameter M N  through the middle of KT, he constructs 
line KFC, such that 

1 
r c  = 3 -  

This construction relies of course on Lemma II. But since the diameter M N  is 
greater than the radius of the given circle BG, four lines can generally be drawn 
that satisfy the stated condition. However, IBN AL-HAVTHAM neither considers 
nor  refers to any line other than KFC. Nor does he consider or refer to the case 
in which E lies inside the given circle. 

So here again IBN AL-HAYTHAIV[ is concerned with a particular case to be 
applied later to a particular construction. 

This can be c r a f ty  illustrated by IBN AL-HAYTHAM'S own construction for the 
reflection-point on the surface of a spherical convex mirror (Fig. 1). Here the 
conditions he lays down for drawing line SFQ (in particular, that angle SNQ 
must be obtuse) is equivalent to asserting that A and B (the two points related 
as object and eye) must be such that the line joining them neither cuts nor is 
tangent to the circle. I f  this condition does not obtain, no reflection from the 
convex side of the mirror will take place. (His investigation of this type of mirror 
is completed by a reductio ad absurdum proof  that shows that no more than one 
reflection-point is possible.) 

How, then, does IBN AL-HAYTHA~ find the reflection-point (or points) on 
the surface of a spherical concave mirror ? He enumerates the special cases and 
deals with them one by one. The two points related as object and eye may lie on 
the diameter of the mirror (or on its extension) at equal or unequal distances 
from the centre of the mirror. Or they may lie on different diameters, their distances 
from the centre being equal or unequal. IBN AL-HAYTHAM'S piecemeal treatment 
of  these cases, in which he applies his lemmas as required, makes for an even 
longer story than the one I have just summarized. But adding all these cases to- 
gether we obtain a general solution of "Alhazen's problem" in HUYGENS' restricted 
sense. Long or not, this was an impressive achievement. But the historian's job 
is not completed before other investigations have been carried out. We still, for 
example, have to identify IBN AL-HAYTHAM'S sources and find a detailed explana- 
tion for the character of his approach. 

The preceding account had two limited aims: to give an accurate, though 
abbreviated, description of IBN AL-HAYTHAM'S procedure by providing exact 
figures that correspond to his own text, and to point out certain features of his 
proof  that must be borne in mind in studying their character, their influence, 
and the reactions (and misunderstandings) they have given rise to. These two 
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aims must be fully realized before we can put ourselves in a position to achieve 
an exact assessment of IBN AL-HAYTHAM'S contribution, or make meaningful 
comparisons between his performance and that of  later mathematicians. 

I I  

Translation of Ibn abHaytham's Lemmas 16 

[Lemma I:  Figures 4 and 5] 

Let circle ABG [Fig. 4], with diameter GB, be known [rnaClffma]; let GB be 
produced on the side of  G; let line KE be given [mafr~d] and let point A be given 
on the circumference of the circle. We wish to draw from A a line, as AHD, so 
that the part  of it that lies between the diameter and the circle--such as HD--is 
equal to line KE. 

Now arcs BA, AG are either equal to one another or not. 
Let them be equal. We join lines BA, AG, and make the product  of  KZ and 

ZE equal to the square of  AG. Line KZ will then be greater than line AG. 
Draw AG and make AT equal to KZ', 
with A as centre and with distance AT, draw an arc of  a circle: it will always 

cut line GD-- le t  it cut it at D. 
Join AD: the line AD will be equal to line KZ. 
AD will always cut arc AG, since the line drawn tangentially from A will be 

parallel to GB; for the line from point A joined to the circle's centre will be per- 
pendicular to line GB, because of the equality of  arcs AB, AG. Therefore line AD 
will cut arc AG-- le t  it cut it at point H. 

Join GH. 
Angles AHG, ABG will together be equal to two right angles. 
But angle ABG is equal to angle AGB; 
therefore angle AHG is equal to angle AGD; 
therefore triangle ADG is similar to triangle AGH. 
I t  follows that the ratio of  DA to AG is as the ratio of GA to AH, and, there- 

fore, the product of DA and AH is equal to the square of  AG. 

26 The following translation is made from my (as yet unpublished) edition of the 
Arabic text in Book V of Kit~b al-Man~zir. Book V survives in three MSS which are all 
preserved in istanbul libraries: Fatih 3215, fols. 138a-332 b, dated Jum~d~. II, 636/A.D. 
1239; Ayasofya 2448, fols. 386b-508 a, dated A.H. 869/A.D. 1464-1465; and K6prtilti 
952, fols 2 a-b, 74a-81 b, 89a--107 b, 134a--135 b, dating probably from the 14th century A.D. 
All geometrical diagrams for Book V are missing from the Fatih and Ayasofya MSS. 
The KOprtilti MS is incomplete but has the diagrams associated with the part of the text 
which it includes. I have made use of KAM~L AL-DiN'S Tanq~h and of RISNER'S edition of 
the medieval Latin version of Kit~b al-Man~zir, both of which include the diagrams but 
not always accurately drawn. 

In transliterating the Arabic I have used C for sfid, J for sh-in and t for t~'. All other 
transliterations are standard in recent literature. 
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But the product of KZ and ZE is equal to the square of AG; 
therefore the product of DA and AH is equal to the product of KZ and ZE. 
And DA is equal to KZ; therefore AH is equal to ZE. 
It remains that line HD is equal to line KE. 
And that is what we wished to do. 

Now let arcs BA, AG be unequal [Fig. 5]. We join lines BA, AG, and draw 
GZ parallel to BA. Take a given line at random; let it be TN. Make angle TNL 
equal to angle DGA, and angle TNM equal to angle DGZ; 

produce line LN on the side of N to Q, and draw line MT parallel to line NL; 
further, draw line TQ parallel to NM, and produce QT on the side of T to O. 
Then, through M, we draw the hyperbola of  which lines OQ, QL are asym- 

ptotes (as has been shown in Proposition 4 in Book II of the Conics of Apollo- 
nius) -- and let it be section SMW; 

make the ratio of line I to line TN as the ratio of line BG to line KE; 
draw in section S M W  line MC equal to l ine/ ,  and produce MC on both sides; 
it will meet lines LQ, QO (as has been shown in Proposition 8 in Book II 

of  the Conics)--and let it meet them in points L, O. 
Then lines OM, LC will be equal (as has been shown also in Proposition 8 

of  the said Book). 
Draw from point Tline TFparallel  to line OL, and let it cut line NMin  point J. 
Thus, surface LMTF being a parallelogram, line L M  will be equal to line FT. 
But L M  is equal to CO, 
therefore CO is equal to TF; 
and MO is equal to JT, because surface JO is a parallelogram, 
it remains that FJ is equal to CM; 
and CM is equal to /, 

therefore line FJ is equal to line I; 
and it follows that the ratio of line FJ to line TN is as the ratio of BG to KE. 
On line GA and at point A draw angle GAZ equal to angle NFT. 
This line, i.e. line AZ, will meet line GD, because the angles at points A, G 

are equal to the angles at points F, N-- le t  it meet GD at D. 
Now since angles AGD, ZGD are equal to angles FNT, JNT, 
and angle GAD is equal to angle NFT, 
triangles AGZ, ZGD, AGD are similar to triangles FNJ, JNT, FNT, 
and, therefore, as ZA is to AG so is JF to FN, 
and, as AG is to GD, so is FN to NT; 
therefore as AZ is to GD so is FJ to NT. 
But FJ is equal to /, and as I is to TN so is BG to KE, 
therefore as AZ is to GD so is BG to KE. 

And since line AD meets BD outside the circle on the side of G, line DA will 
either touch the circle at point A [Fig. 5.1], or it will cut arc AG [Fig. 5.2], or else 
cut arc AB [Fig. 5.3]. 

For, if arc AG is smaller than arc AB [Fig. 5.1], then the tangent drawn from 
A will meet the diameter BG on the side of G, and the line drawn from A parallel 
to diameter BG will cut arc AB; and, therefore, the lines which are drawn from A 
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and which meet GD above the tangent will cut the part of arc AB that is cut 
off by the parallel line. Further, the lines which are drawn from point A and which 
meet GD below the tangent will cut arc AG. 

Now let arc AG be greater than arc AB [Fig. 5.2]; then every line drawn from. 
A, meeting BG outside the circle on the side of G, will always cut [arc] AG. 

For the tangent drawn from A will meet BG on the side of B, 
and the line drawn from A parallel to the diameter BG will cut arc AG; 
from which it follows (if arc AG is greater than arc AB) that all lines drawn: 

from A so as to meet BG outside the circle on the side of  G will cut arc AG. 
Thus line AD will either touch the circle at A (as in the First Figure), or cut  

arc AG (as in the Second Figure), or else cut arc AB (as in the Third Figure)_ 

[And, first,] let it be tangent [to the circle, as in Fig. 5.1]. 
Then angle GAD is equal to angle ABG, 
and angle ZGD is equal to angle ABG, 
therefore angle ZGD is equal to angle GAD. 
Therefore the product of  AD and DZ is equal to the square of GD; 
and the product of BD and DG is equal to the square of AD (because AD is. 

a tangent); 
it remains that the product of  DA and A Z  is equal to the product of BG and 

GD. 
Therefore as A Z  is to GD, so is BG to DA; 
but A Z  to GD was shown to be as BG is to KE; 
therefore as BG is to KE so is BG to DA; 
and, therefore, line DA is equal to line KE. 

Now let line AD cut arc AG, say at point H [Fig. 5.2]. 
Join GH. 
Angle AHG will then together with angle ABG be equal to two right angles. 
Therefore angle GHZ is equal to angle ABG; 
and angle ZGD is equal to angle ABG; therefore angle GHZ is equal to angle- 

ZGD; 
therefore the product of HD and DZ is equal to the square of GD; 
and the product of AD and DH is equal to the product of BD and DG; 
it remains that the product of HD and AZ is equal to the product of BG andl 

DG. 
Therefore as A Z  is to GD so is BG to HD; 
but A Z  to GD was [shown to be] as BG is to KE; therefore as BG is to HD so~ 

is BG to KE; 
therefore line HD is equal to line KE. 
Now let line AD cut arc AB, say at point H [Fig. 5.3]. 
Join HG. 
Thus angle GHA is equal to angle GBA; 
and angle ZGD is equal to angle GBA; 

therefore angle GHD is equal to angle DGZ. 
Therefore the product of HD and DZ is equal to the square of GD; 
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but the product of  HD and AD is equal to the product of  BD and DG; 
it remains that the product  of HD and AZ is equal to the product of BG and 

GD. 
Therefore as AZ is to GD, so is BG to HD; 
but AZ is to GD as BG is to KE; 

therefore as BG is to HD so is BG to KE; 
therefore line HD is equal to line KE. 

We have thus shown in all cases how to draw from A a line that meets the 
diameter  BG outside the circle on the side of  G, so that the part  of  the line that 
lies between the circle and the diameter is equal to line KE 

And that is what we wished to do. 

[Lemma II:  Figure 6] 

Again, let [points] A, B, G be on the circumference of a circle; let BG be a 
diameter, and let line ZHbe given; we wish to draw from A a line that cuts diam- 
.eter BG and carries through to the circle, so that the part  of  it that lies between 
the circle and the diameter will be equal to line ZH. 

Join lines AB, AG; and on line ZH and at point H construct angle ZHK equal 
to angle ABG, and angle ZHT equal to angle AGB; 

f rom Z draw line ZT parallel to line KH, and ZK parallel to TH; 
thus surface TK will be a parallelogram. 
Draw through point T the hyperbola of which lines HK, KZ are asymptotes--  

let it be section TC, and let the opposite section be WS; 
produce lines HK, ZK on the side of K to L, F, and with T as centre, and with 

a distance equal to diameter BG, describe a circle, and let this circle meet section 
WS at point S. 

This circle will meet section WS if BG is not smaller than the shortest line that 
can be drawn from point T to section WS. 

As to which is the shortest line that can be drawn from T to section WS, 
this has been shown in Propositions 34 and 61 in Book V of  Apollonius'  Conics. 

Thus the circle described about  T with distance BG, if  it meets the section, will 
either touch it at one point or cut it in two points. 

I f  it touches the circle, then only one line equal to BG can be drawn from point 
T to section WS. 

But if the circle cuts the section in two points, then only two lines equal to 
BG can be drawn from point T to section WS. 

Thus point S is either the point of tangency or one of the two points of  inter- 
:section. 

Join line TS; it will be equal to BG. 
Line TS will thus cut lines HK, KQ--let it cut HK in point F, and KQ in point 

Q; 
draw from Z a line parallel to TS, which will cut lines HK, HT, since line TS 

cuts these two lines--let that be line LZM; 
thus Z M  will be equal to TQ, because surface MQ is a parallelogram. 
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Now since CT, WS are opposite sections, 
and TS cuts their asymptotes, 
line TF will be equal to line QS (as is shown in Proposition 1617 in Book II  

of  the Conies). 
And TF is equal to line ZL, because surface LT is a parallelogram, 

therefore ZL is equal to QS; 
and Z M  is equal to TQ, 

therefore L M  is equal to TS; 
and TS is equal to BG, 

therefore L M  is equal to BG. 

We further construct on line BG, at point G, an angle BGD equal to angle 
MLH. 

Angle MLH will be acute because angle L H M  is right, being equal to ABG 
and AGB. 

Line GD will therefore fall inside the circle--let it cut the circle at point D. 
Join BD, AD, and let AD cut BG at point E. 
Angle GDB will be a right angle, equal to LHM, 
and angle BDE will be qeual to angle BGA which is equal to angle ZHM, 
and angle GBD will be equal to angle LMH. 
Thus triangle BGD will be similar to triangle LMH, 
and triangle DEB will be similar to triangle HZM. 
Therefore as GB is to BD, so is L M  to MH; 
and BD is to DE as M H  is to HZ, 

therefore as GB is to ED so is L M  to ZH; 
but L M  is equal to BG, 

therefore DE is equal to ZH. 
We have thus drawn from point A line AED so that line ED is equal to line 

ZH. 
And that is what we wished to do. 

But if two lines equal to BG go from point T to section WS, then there will 
go from point Z to lines KH, HT two lines equal to line BG, producing between 
them and line HK two unequal angles. 

Then if two angles equal to those angles are constructed on line BG at point 
G, two points will be produced on arc BG. 

And if two lines are joined between them and point A, there will be cut off 
f rom each of these lines between arc BDG and diameter BG a line equal to ZH- -  
this being shown by the demonstration we mentioned. 

Further, if line BG is equal to the shortest line that can be drawn from point T 

17 All three MSS have "11" instead of "16", the correct number of the proposition 
in Bk. II of the Conics both in HHBER6'S edition of the Greek text and in the Arabic 
copy in IBN AL-HAYTHAM'S own hand (MS Ayasofya 2762). The wrong number "11" 
is written out in words in the K6prfilfi MS, and in the abjad notation in the Ayasofya 
and Fatih MSS. 
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to section WS, then only one line can be drawn from A to arc BDG so that the 
segment between the arc and line BG is equal to ZH. 

I f  BG is greater than the shortest line, then there will go f rom A to arc BDG 
two lines in each of which the segment between the arc and the diameter will be 
equal to line ZH. 

No more than two lines can be drawn from A to arc BDG so that the segment 
between the arc and the diameter will be equal to ZH. For  the circle about  centre 
T cannot cut section WS at more than two points, the centre of  the circle being 
outside the section. 

And, further, if  BG is smaller than the shortest line, then a line cannot be drawn 
from A to arc BDG, so that  the segment between the arc and the diameter is equal 
to ZH. 

This construction is, therefore, either impossible, or it can be carried out once, 
or twice, but not more. 

And that is what we wished to do. 

[Lemma I I I :  Figure 7] 

Again, in triangle ABG let angle B be right; let D be given on line BG; and 
let the ratio of  E to Z be known; we wish to draw f rom D a line like DTK so that  

the ratio of  TK to TG 
is as the ratio of  E to Z. 

Join DA, and draw DM parallel to BA; 
and on triangle DMG describe circle DMG; MG will be a diameter of  the circle 

because MDG is a right angle. 
Draw angle D M N  equal to angle DAG; 

M N  will then cut angle DMG and, therefore, will cut arc DG (as in the First 
Figure), 

or cut arc MG (as in the Second Figure); 
let it cut [either] arc in point N. 

Let the ratio of  line AD to line H be as the ratio of  E to Z;  
and f rom N draw line NCL so that  CL will be equal to H (as was shown earlier); 
then join DC and produce it in a straight l ine-- i t  will cut LM, say in point T; 
and join GC. 

Angle GCD will then be equal to angle GMD, and, therefore, equal to angle 
GAB, 
therefore angle GCT is equal to angle TAK; 

but angle CTG is equal to angle ATK; 
therefore if  line CT is produced in a straight line (as in the First Figure), it will 
meet line AK at an angle equal to angle TGC. 

Produce CT and let it meet AK at K. 
Then triangle AKT will be similar to triangle CGT (in both Figures): 
therefore as AT is to TC, so is KT to TG. 
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Again, angle DCN is equal to angle DMN, 
and angle DMN is equal to angle DAT, 

therefore angle LCT is equal to angle DAT. 
And triangle LCT is similar to triangle ADT, 

therefore as AT is to TC, so is 
And LC is equal to H, 

therefore as AT is to TC, so is 
But AD is to H a s  E i s  to 

AD to LC. 

AD to H. 
Z, 

therefore as AT is to TC, so is E to Z. 
And AT is to TC as KT is to TG, 

therefore as KT is to TG, so is E to Z. 
And that is what we wished to do. 

[Lemma IV: Figure 9] 

Again, let circle AB, with centre G, be given, and let D, E be two given points; 
we wish to draw from E, D, two lines like EA, DA, so that a line drawn tangentially 
to the circle, such as AH, will bisect angle EAD. 

Join GD, GE, ED; and produce EG in a straight line to B. 
Take any line at random, say MI, and divide it at S, so that 
as IS is to SM, so is EG to GD; 
then bisect line [IM] in N, and draw NO perpendicular to it; 
make angle NMO equal to half of angle DGB, 
and from S draw line SQF, so that 
as QF is to FM, so is EG to GB; 
and make angle EGA equal to angle SFM; 
and join EA, QM; 

then triangles EAG, QMF will be similar. 

Make angle EAZ equal to angle QMS; 
thus angle ZAG will be equal to angle SMO which is equal to half of angle DGB. 

Produce AZ on the side of  Z, and make the ratio of 
AZ to ZK equal to the ratio of  MS to SI, which is the same as the ratio of 

DG to GE. 
Join EK, QI, and draw the perpendicular EL [to AK]. 
Thus the angles at points A, E, K, Z, L will be equal to the angles at points 

M, Q, /, S, N, and, therefore, the triangles will be similar. 
Therefore AL will be equal to LK, and AE equal to EK, 
and the ratio of  KZ to ZA will be as the ratio of IS to SM, which is the same 

as EG is to GD. 

Draw AT parallel to line EK. 
Therefore angle TAZ will be equal to ZAE, 

and as EA is to AT, 
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so will be EZ to ZT, 
and KZ to ZA, 

which is the same as EG is to GD. 

Now make angle GA W equal to angle GAE. 
Therefore angle WAT will be double of angle GAZ, which is equal to angle FMN, 
which is half of angle DGB; 

therefore angle WAT will be equal to angle DGW; 
therefore line WA will meet line GD--if line A W meets line GB, 
and the triangle cut off by line WA produced will be similar to triangle WAT. 
I say, then, that line WA will meet line GD at point D. 
For, as EG is to GD, so is EA to AT; 
and EA to A T  is compounded of EA to A W  and WA to AT; 
therefore EG to GD is compounded of EA to A W and WA to AT. 
And as EA to AW, so is EG to GW, because the angles at A are equal; 
and as WA is to AT, so is WG to the line cut off by WA from line GD; 
therefore the ratio of EG to GD is compounded of EG to GW and GW to 

the line cut off by WA from line GD. 
But EG to GD is compounded of  EG to GW and GW to GD, 
therefore GD is the line cut off by WA and GD; 
and thus line WA will go through to point D; 
and, therefore, angle TAD will be equal to angle EGD. 

Now make angle GAH right. 
Then angle Z A H  will be half of EGD, because angle ZAG is half of angle DGW. 

Thus angle Z A H  is half of  angle TAD, 
and angle Z A E  is half of angle TAE, 

therefore angle EAH is half of angle FAD. 

But if line A W is parallel to line GE, then angle EGA will be equal to angle 
GAE; 

therefore line AE will be equal to line EG. 
But the angle next to angle WAT is equal to angle TGD, 
and the angle at the intersection of WA with GD will be equal to angle TGD, 

because they are alternate angles, 
therefore line TA will be equal to the line cut off by WA from line GD; 
and line EA is equal to line EG; 
therefore as EA is to AT, so is EG to the line cut off by WA from GD; 
but EA is to AT as EG is to GD; 

therefore the line cut off by WA from GD is the same as line GD; 
therefore angle TAD will be equal to angle EGD. 
And angle Z A H  is half of angle EGD, 

therefore angle Z A H  is half of angle TAD; 
but angle Z A E  is half of angle TAE, 

therefore angle EAH will in all cases be equal to half of angle EAD. 
And that is what we wished to prove. 
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[Lemma V: Figure 11] 

Again, let circle AB be given, with centre G and diameter [sic] GB, and let 
point E be given outside the circle, and we wish to draw from E a line, as EDZ, 
so that DZ will be equal to ZG. 

Join EG, and f rom E draw ES perpendicular to line GB; 
and make line TK equal to line ES; 
on line TK describe the segment of  a circle that admits angle EGB, and let it 

be segment TMK, and complete the circle; 
bisect TK at L, and draw LM perpendicular to TK and carry it through to N; 
MN wilt then be a diameter of  the circle. 
F rom point K draw line KFC so that line CF will be equal to half of  line GB. 
Join TF--it will be equal to FK. 
Draw CQ parallel to FN, and QO parallel to KL; 
angle CQO will then be a right angle, and QF will be equal to FO, because TF 

is equal to FK. 
Then, since angle CQO is right and line QF is equal to line FO, 
line QF will be equal to FC, and FC to FO. 
Construct angle BGD equal to angle KCQ; join ED and carry it through to Z. 
I say, then, that DZ is equal to ZG. 

Demonstrat ion:  
From point D draw the perpendicular DI, and construct the right angle 

GDW: 
line D W  will then meet GB, because angle DGZ is acute because it is equal to 

angle OCQ--let them meet at W. 
Join TC, and f rom Q draw the perpendicular QH, 
draw TJ parallel to CH, and produce HQ to meet it, say at point or. 
Draw the perpendicular TR: it will be equal to JH. 

Then, since CF is half of  GB, CO will be equal to GD; 
and TK is equal to ES; 

therefore as TK is to CO, so is ES to GD. 
But as GD is to DI, so is GW to WD, 
and as GW is to WD, so is CO to OQ, 

therefore as ES is to DI, so is TK to QO, which is the same ratio as TF to FQ; 
therefore as ES is to DI, so is TF to FQ. 
And as TF is to FQ, so is JH to HQ; 
and JH is equal to TR, 

therefore as ES is to DI, so is TR to QH. 
And as GEls to ES, so is CTto TR, because the two triangles [GES and CTR] 

are similar, 
therefore as EG is to DI, so is TC to QH. 

And ID is to DG as HQ is to QC, 
therefore as EG is to GD, so is TC to CQ. 

And angles EGD, TCQ are equal, and therefore the two triangles are similar, 
therefore angles GDZ, CQF are equal. 
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And angles DGZ, QCF are equal, 
therefore as DZ is to ZG, so is QF to FC. 

And QF is equal to FC, 
therefore ZD is equal to ZG. 

And that is what we wished to prove. 

[Lemma VI: Figure 8] 

Again, let the right-angled triangle ABG have the angle B fight; let AB be 
produced on the side of  B, and let point D be given on BG; and, further, let E 
to Z be a given ratio; and we wish to draw f rom D a line, 
such as line TDK, so that  

as TK is to KG, so is E to Z. 

Join AD, 
and let AD to H be as E is to Z;  
draw DM parallel to BA, so that angle MDG will be fight; 
on the triangle MDG describe a circle with diameter MG; 
construct angle DMC equal to angle DAG; 
f rom point C draw CLN, so that line LN will be equal to line H;  
join DKN and carry it through on the side of  D to T; 
and join GN. 

Therefore angle DNG will be equal to angle DMG which is equal to angle 
BAG. 

But angle NKG is equal to angle AKT, 
therefore line KT will meet line AB, say at point T, 

and, therefore, triangles ATK, NGK will be similar; 
therefore as TK is to KG, so is AK to KN. 

And angle DNC is equal to angle DMC which is equal to angle DAG, 
therefore triangles AKD, NKL are similar; 
therefore as AK is to KN, so is AD to NL, which is the same as E is to Z;  
therefore as TK is to KG, so is E to Z. 

And that is what we wished to prove. 

And it was shown earlier that  there issue f rom point C two lines such that the 
segment of  each of them that lies between the circle and the diameter will be equal 
to the given line. Thus if two such lines are drawn from C, then there will issue 
f rom point D two lines in the given ratio; but the two angles produced at point 
G will be unequal, I mean angle TGK and the angle corresponding to it. 
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