
      

MATHEMATICAL ORIGAMI: ANOTHER VIEW OF
ALHAZEN’S OPTICAL PROBLEM

Roger C. Alperin

1. Fields and Constructions

We can solve some elementary problems from geometry using origami
foldings. Below are the axioms which guide the allowable constructible
folds and points in C, the field of complex numbers, starting from the
labelled points 0 and 1 (see [1] for more details and references) .

(1) The line connecting two constructible points can be folded.
(2) The point of coincidence of two fold lines is a constructible point.
(3) The perpendicular bisector of the segment connecting two constructible

points can be folded.
(4) The line bisecting any given constructed angle can be folded.
(5) Given a fold line l and constructed points P,Q, then whenever pos-

sible, the line through Q, which reflects P onto l, can be folded.
(6) Given fold lines l,m and constructed points P,Q, then whenever

possible, any line which simultaneously reflects P onto l and Q onto
m, can be folded.

The first three are the Thalian constructions which ensure that we
have a field after we have a non-real complex number z. Some proper-
ties of these constructions include: reflections can be folded; the set of
slopes of fold lines correspond to the points constructed on the imagi-
nary axis together with∞; the points which can be constructed contain

the field Q(z) and is contained in Q(z, i); starting with z = 1+i
√

3
2

, the
point i can not be constructed.

Adding the fourth axiom gives the Pythagorean field of points con-
structible by straightedge and dividers as discussed by Hilbert. Some
properties of this field include: the (real) field of Pythagorean con-
structible numbers is characterized as the smallest field containing the
rational numbers and is closed under

√
a2 + b2 for (a, b) a constructed

point; furthermore, any algebraic conjugate of a real Pythagorean is

real and has degree which is a power of 2; the number
√

1 +
√

2 does
1
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not belong to the field; any regular polygon which can be constructed
by ruler and compass can be constructed with these axioms.

Adding the fifth axiom gives the Euclidean field of points constructible
by straightedge and compass; it enables the construction of the tan-
gents (through Q) to a parabola with focus P and directrix l. The
Euclidean field is characteized as the smallest field containing the ra-
tional numbers and closed under all square roots.

Allowing axiom (6) yields the construction of the simultaneous tan-
gents to two parabolas. Since this is related to pencils of conics we
may also refer to the origami numbers as constructible by straightedge,
compass and pencils. The axioms (1)-(6) are the Origami construction
axioms for the complex origami numbers, O. The Origami construc-
tions (1)-(6) enable us to construct a real solution to a cubic equation
with real coefficients in this field O. To see this, consider the con-
ics (y − a

2
)2 = 2bx, 2y = x2. These conics have foci and directrices

that are constructible using field operations involving a and b. Con-
sider a simultaneous tangent, a line with slope µ meeting these curves
at the respective points (x0, y0), (x1, y1). By differentiation we find
that the slope µ of a common tangent of these two parabolas satisfies
µ3 + aµ+ b = 0, and hence we can solve any cubic equation with spec-
ified real constructible a, b ∈ O for its real roots. Using the resolvant
cubic of a quartic equation we can also solve fourth degree equations
over O. The field of Origami constructible numbers is characterized
as the smallest subfield of the complex numbers which contains the
rational numbers and is closed under all square roots, cube roots and
complex conjugation.

This Origami field of numbers O is the same field Viete studied
systematically at the beginning of ‘algebraic geometry’ in 1600. Of
course Viete was in a sense rediscovering what was already long ago
known via neusis constructions, to Archimedes and Apollonius, 250
BC, some of which was written down by Pappus over five hundred
years later, 325 AD. One of Pappus’ aims, it appears to me, was to
prove all conic constructibles are the same as neusis constructions.
This was later picked up by Alhazen in the 11th century. Alhazen was
interested in reconstruction of the lost works of Apollonius related to
these geometrical constructions.

Moreover, the constructions using a neusis or marked ruler are the
same constructions as using intersections of conics; both are equivalent
to the origami constructions described by axioms (1)-(6). Our renewed
interest in Alhazen’s problem arose because of the this equivalence ([1]).
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2. Harmonic Origami Numbers

In fact we can introduce yet another intermediate field of numbers

and constructions using the Pythagorean axioms (1-4) together with

T. Given P and Q and a line l through P then we can simultaneously
fold Q onto l and P onto the perpendicular bisector of PQ.

This gives the field of Harmonic numbers. Some of the properties of
this field include: the real subfield of harmonic constructible numbers
is the smallest field closed under

√
a2 + b2 for a, b in the field and also

closed under adjunction of any real number satisfying an irreducible cu-
bic having three real roots with real harmonic number coefficients; tri-
sections can be done using axiom T; 3

√
2 is not harmonic constructible.

Call an integer of the form 2a3b, a harmonic integer, so named by
Phillip de Vitry (14th century) in studying relations to music. Any
regular polygon with n sides can be constructed using these axioms iff
Φ(n) is harmonic iff n is a product of a harmonic integer and distinct
primes p, so that p− 1 is harmonic. Any regular polygon with n sides
can be constructed iff Φ(n) is a harmonic integer; the real constructible
harmonic points are characterised as the real Origami numbers which
have Galois closure whose degree is an harmonic integer. We shall leave
the details of these remarks for a later time.

3. Some Elementary Problems from Geometry

To lead up to Alhazen’s problem we start with an easy geometry
problem, the river crossing.

3.1. In going from town A to town B one must cross the river L

(of fixed width d) at a point z. Locate z so as to minimize the
distance (by land) from A to B.
The solution can be folded easily; fold so that the the river disappears,

down the middle and then fold the line AB; this line gives the path
and the bridge is the perpendicular at the river. It is clear that if we
have any path from A to the river and across followed by the path to
B that when we fold the river away that the two parts of the path give
a length which can be shortened if it is made into a straight path.

A similar problem arises when we go from A to B on the same side
of L.

3.2. In going from town A to town B on the same side of the river,
one must first stop at the river L at a point z. Locate z so as to
minimize the distance from A to B.
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One can first reflect B across the line L to B0 and then the straight
line AB0 meets the river at z = C giving the stopping point for shortest
distance. Morever, now it is also apparent that the two angles at C
made with L are equal.

After giving the solution to these, I suggest to my students that
it would be interesting to formulate and solve these problems for a
circular rather than a straight river. I had in mind one point inside
an inner circle and the other outside the outer concentric circle. The
bridge is to be along the diameters.

3.3. In going from town A to town B one must cross the annular
river (or moat) of fixed width d at a point z. Locate z so as to
minimize the distance (by land) from A to B.
In this circular or annular problem after we locate the points z = C on

the outer circle and the corresponding point D on the inner circle which
are the ends of the bridge then we can fold away the section between
them. What remains now are two segments which give the path from A
to B. In order to minimize this then it should be a straight path as in
Figure 3.1. Thus we need only construct AB originally and this gives
the point C. Another potential solution occurs at the point where AB
meets the inner circle.

Figure 3.1. Bridge over Annular River

The last problem, I have learned, is equivalent to the classical Al-
hazen’s Problem. Suprisingly several others have recently taken a re-
cent look at this ancient piece of beautiful work. It is the circular
analogue of the second problem. We formulate the problem as follows.
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3.4. Given points A, B exterior to a circle Γ. Locate z = C on Γ so
that the distance AC + CB is minimized.
At a point z = C ∈ Γ, we construct the tangent to Γ. Reflect B to the

other side giving B1. The sum of the two segment lengths AC and CB
can be shortened by making AC ∪ CB1 straight. Thus the shortest
distance occurs when \ACB is bisected by the diameter through C.
A similar angle restriction gives the shortest distance when then the
two points are first inside the circle. (We leave to the interested reader
other questions of this sort involving the other conics.)

When the points are outside the circle this is ‘Alhazen’s problem’,
a problem of optics possibly first formulated by Ptolemy. The famous
al-Hasen Ibn al-Haytham (latinized Alhazen) lived in the 11th century
(Basra, Persia and Cairo, Egypt ) and wrote a most influential text
on optics, later used by Renaissance scientists. According to [7], Al-
hazen’s problem can be reduced to the construction by a neusis, op.
cit. Lemma 1, p. 310.

Huygen’s solution (1672) of Alhazen’s Problem is equivalent to ibn
al-Haytham’s original solution [7]. Huygen’s was displeased with Al-
hazen’s solution by a classical neusis. The problem was solved by
Huygens, reducing the problem to the intersection of the circle with an
equilateral hyperbola; the solutions can then realized as solutions of a
real fourth degree equation. A recent construction of this hyperbola
is given in [5]. With the given points inside the circle this is the cir-
cular billiard problem considered also in [8]. One can use inversion in
the given circle to convert one formulation to the other. Yet another
formulation [3], asks when the chords from a point on the circle to the
given points are equal.

It is important to realize that geometrical constructions of the early
Renaissance eventually led to formulas for the roots of cubics and quar-
tics involving radicals, by del Ferro in the early 16th century and pop-
ularized by Cardano in the latter part of that century.

4. Alhazen’s Problem-Huygen’s Solution

We restate Alhazens’s problem in terms of angles.

4.1. Given points A, B exterior to a circle Γ. Locate z = C on Γ so
that the \ACB is bisected by the diameter through C.
We regard the given points a = A, b = B as complex numbers and

the circle Γ of radius 1 centered at the origin O. Using the argument
of a complex number (or polar coordinates) as in [6, 8], arg(a−z

b−z ) is the
measure of the angle \azb. Thus we want z so that \azO = \Ozb
or equivalently arg( a−z

O−z ) = arg(O−z
b−z ); we obtain a real number by
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evaluating a−z
z

( z
b−z )−1. Using the fact that this number is equal to its

conjugate and simplfying with zz = 1 we find that

(ab)z2 − (ab)z2 = (a+ b)z − (a+ b)z.

This gives an equation relating the imaginary parts of two complex
numbers,

Im((ab)z2) = Im((a+ b)z).

This is easily seen to be satisfied by z ∈ {O, 1
a
, 1
b
, 1
a

+ 1
b
}. Let p =

Im(ab), q = Re(ab), r = Re(a + b), s = Im(a + b). We can write this
equation in terms of real coordinates using z = x+ y · i to obtain

p(x2 − y2)− 2qxy = sx− ry.
This is the equation of an hyperbola. Thus, the solution to Alhazen’s
problem if it exists, occurs at one of the intersections of this hyperbola
and the unit circle centered at the origin.

Figure 4.1. Huygens’ Solution: A=(2,1), B=(1,−1
2
)

Now rotate the plane about the origin by the angle so that the pos-
itive x-axis bisects the angle \a0b, hence b = ka for some k > 0;
consequently p = Im(ab) = 0, thus eliminating the terms x2, y2 from
the equation of the hyperbola above. The equation of the equilateral
hyperbola now simplifies to (x− r

2q
)(y+ s

2q
) = − rs

4q2 . It follows that the

center of this hyperbola is at ( r
2q
, −s

2q
) = (Re(a+b)

2ab
, −Im(a+b)

2ab
) = 1

2
( 1
a

+ 1
b
).
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A simple example for a = 2+ i, k = 1
2

is displayed in Figure 4.1. The
point z ≈ .9643353545− .2646834413 · i gives the solution to Alhazen’s
problem where the x coordinate solves x2 + ( −x

2(5x−3)
)2− 1 and the y co-

ordinate is −
√

1− x2. The argument arg(a−z
b−z ) gives 132.06736 degrees

which is twice arg(a−z
z

).
The solution to Alhazen’s problem is the same as the simultaneous

solution to

A1 : x2 + y2 = 1, A2 : 2qxy + sx− ry = 0.

These simultaneous solutions to A1 and A2 also lie on any curve in

the pencil A2 − λA1; the pencil has matrix

−λ q s
2

q −λ − r
2

s
2
− r

2
λ

. The

determinant of this matrix pencil gives a cubic polynomial, p(λ) =
λ3 + 1

4
(s2 + r2 − 4q2)λ − 1

2
rqs. Now solve the reduced cubic p(λ) = 0

using the technique allowed by axiom (6). Finding the roots to this
cubic is similar to the technique of solving the resolvant cubic of a
quartic. Each root gives a degenerate conic in the pencil; a pair of lines
meeting at a diagonal point. One needs to use square roots to obtain
the equations of these lines. By solving this cubic and the quadratics
we obtain the (at most) six lines in the complete quadrilateral, and
therefore the four points of intersection of the conics and the three
diagonal points as in Figure 4.2 for the example above.

Figure 4.2. Complete Quadrilateral
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We can also replace the Alhazen-Huygens solution as simultaneous
intersection of conics by a single real quartic. We describe in the next
section how pencils and origami may be used to simplify and solve the
quartic.

5. An Origamic Solution to the Quartic

We assume that we are given a general real quartic. Complete the
quartic to eliminate the coefficient of x3 to obtain the quartic, say
x4−2cx2−dx−e = 0 for certain real c, d, e. (If d = 0 then we can solve
the quartic using square roots so we assume d 6= 0.) Put y = x2 − c;
then the quartics’ solutions are the same as the simultaneous solutions
to two parabolas

P1 : y = x2 − c, P2 : y2 = dx+ e+ c2.

The duals of these two parabolas give two conics. The dual equations
are

C1 : X2 + 4cY 2 − 4Y = 0, C2 : 4(e+ c2)X2 + d2Y 2 − 4dX = 0.

Duality Principles.

(1) The common tangents to C1 and C2 correspond to the common
points of P1 and P2.

(2) The common tangents to P1 and P2 correspond to the comm-
mon points of C1 and C2.

When a tangent line’s equation is say aX + bY + 1 = 0, then a
corresponding common point on the dual is (a, b) and conversely.

Now we consider the pencil generated by C1 and C2; it is C2 − uC1;
when u = 4(e+c2) we obtain the parabola C3. Next consider C3−vC2;

when v = d2−4cu
d2 we obtain an independant parabola C4.

In this case, we have

C3 : d2vY 2 + 4uY = 4dX, C4 : dvX2 + 16cX = 4dY,

and their duals

P3 : (ux+ dy)2 = d3vx, P4 : (dx+ 4cy)2 = d2vy,

are parabolas since the equations have double points at infinity.
By folding tangents to C3 and C4 using axiom (6) we can recover the

points of intersection on P3 and P4 by duality. We obtain the common
points of P1 and P2 by use of the associated complete quadrilateral
which has the same diagonal points as the pencil P3 and P4. We shall
elaborate on this connection in further detail at another time.
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6. Geometry and Axiomatic Origami

One interseting problem is to give elegant constructions using a given
set of axioms. For example show how to solve problems from Euclidean
geometry with the Euclidean axioms or Pythagorean axioms. With the
Origami axioms we can fold the common intersections or tangents to
two conics. Is there an elegant solution?

6.1. Fold the intersections of a conic and a line. Fold the tangents
to a conic from given point. Fold the common tangents to two
conics. Fold the common points of two conics.
One needs to give geometrical data about a conic. Specifying a conic

requires five pieces of information, either points on the curve or tan-
gent lines to the curve; this can also be replaced by focus or directrix
information. For example the circle is either given by three points (and
2 circular points at infinity) or three tangents, or the center and tan-
gents. A parabola can be given by four points (and tangent line at
infinity), or a focus and directrix; hyperbola or ellipse can be specified
by data from foci, center, diameter, tangents, points or asymptotes.

Figure 6.1. Folding the Regular Heptagon using Harmonics

6.2. Given a square sheet of paper fold a regular n gon of largest
area possible using one of the axiom systems Pythagorean, Har-
monic, Euclidean, or Origami?
To fold a heptagon using harmonic constructions. Take a piece of

paper say 6 units square. Fold the corner A to point on CV using a
fold through the corner F as in the diagram of Figure 6.1. This fold
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meets the central vertical line at a point; the midpoint B1 of this point
with the top edge is constructed. The distance of B1 from V is 3

√
3

and so the hypotenuse with the edge CV of length 1 has length
√

28.
Now trisect the angle B1CV to get the point T as in Abe’s trisection
(it is the trisection with the base CB1). Reflect B1 to B2 across CT .
Reflect B2 across CV to get B3. Now fold A7 onto the line B2B3

passing through V . This gives the second point of the heptagon B7.
Now reflect this across V A7 to get the vertex G7 of the heptagon. Fold
B7A7 across the line V B1 and bisect the angle with CV ; construct the
vertex D7 on this bisector. Reflect across CV to get vertex E7. Bisect
the angle \E7V G7; construct F7 on that bisector. Reflect across CV
to get the final vertex.

As one can show, if a polygon can be folded in the square then so
can the optimal one. An analysis of the cosine of the angle involved
in tipping the polygon to its optimal position shows that it belongs to
the field, [2]. Can you fold the optimal heptagon using only harmonic
constructions?
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