## Problem 3: Weights of Vectors

Let $\mathbb{Z}_{n}^{m}=\left\{\left(x_{1}, x_{2}, \ldots, x_{m}\right): x_{i} \in \mathbb{Z}_{n}\right\}$ be the set of all vectors of length $m$ with entries from $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$, integers $\bmod n$.

1. What is the size of the set $\mathbb{Z}_{n}^{m}$ ?
2. The weight of a vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbb{Z}_{n}^{m}$ is the number of non-zero components of $\mathbf{x}$. For example, the weight of the binary vector $(1,0,0,1,0,0,1)$ is 3 . If we pick a random vector from $\mathbb{Z}_{3}^{10}$, what is the probability that its weight is 4 ? If you pick 100 such vectors randomly, how many do you expect to get with weight 4 ?

As always, show your work, fully explain and justify your answer. A solution mainly obtained by computers or calculators will not be accepted.

Posting Date $1 / 29 / 2022$. Submit solutions to Noah Aydin, Mathematics Department, RBH 319 by e-mail or hard-copy by noon Saturday, Feb 5, 2022. An email submission must be a single pdf file. Hard copy submissions must be dropped in the file holder at my office door (Hayes 319) and must include a time stamp.

