Problem of the Week-7

Posting Date 12/2/03. Submit solutions to Noah Aydin, RBH 309-A (e-mail or hard-copy) by 4 pm on 12/12/07.

Let f be a positive (that is $f(x) > 0$ for all x), continuously differentiable (i.e. f' is continuous) function defined for all real numbers, whose derivative is always negative. For any real number x_0, let the sequence x_n be obtained by the Newton’s method, i.e., $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$. Show that the limit of x_n is always ∞.