Problem 7: Fibonacci Sequence $\bmod N$

Let $N>3$ be a positive integer and consider the Fibonacci sequence $\bmod N$, that is,

$$
a_{1}=a_{2}=1, \text { and } a_{n+1}=\left(a_{n}+a_{n-1}\right) \quad \bmod N \text { for } n \geq 2 .
$$

Prove that the sequence $a_{1}, a_{2}, a_{3}, \ldots$ is periodic. What is the maximum possible length of the period?

As always, show your work, fully explain and justify your answer.

Posting Date 11/27/16. Submit solutions to Noah Aydin, Mathematics Department, RBH 319 (e-mail or hard-copy, but hard copy submissions must include a time stamp) by 4 pm on $12 / 8 / 16$.

